INFINITUDE OF ELLIPTIC CARMICHAEL NUMBERS

Abstract In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.

[1]  Elliptic Carmichael Numbers and Elliptic Korselt Criteria , 2011, 1108.3830.

[2]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[3]  Roy Meshulam An uncertainty inequality and zero subsums , 1990, Discret. Math..

[4]  A. Granville Least primes in arithmetic progressions , 1989 .

[5]  M. Ward The law of repetition of primes in an elliptic divisibility sequence , 1948 .

[6]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[7]  D. M. Gordon On the number of elliptic pseudoprimes , 1989 .

[8]  C. Pomerance,et al.  ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS , 2010, Journal of the Australian Mathematical Society.

[9]  A. Rotkiewicz,et al.  On strong pseudoprimes in arithmetic progressions , 1980 .

[10]  Chantal David,et al.  Pseudoprime Reductions of Elliptic Curves , 2010, Canadian Journal of Mathematics.

[11]  KAISA MATOMÄKI CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS , 2013, Journal of the Australian Mathematical Society.

[12]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[13]  Editors , 1986, Brain Research Bulletin.

[14]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[15]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[16]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  J. Cassels Lectures on elliptic curves , 1991 .

[19]  Carl Pomerance,et al.  POPULAR VALUES OF EULER'S FUNCTION , 1980 .

[20]  Carl Pomerance,et al.  On the difficulty of finding reliable witnesses , 1994, ANTS.

[21]  Morgan Ward,et al.  Memoir on Elliptic Divisibility Sequences , 1948 .

[22]  Wang Wei On the least prime in an arithmetic progression , 1991 .

[23]  D. R. Heath-Brown Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .

[24]  Matt Green The Distribution of Pseudoprimes , 2003 .

[25]  M. Murty,et al.  Elliptic Pseudoprimes , 2010 .

[26]  H. Mikawa,et al.  Almost-primes in arithmetic progressions and short intervals , 1989 .

[27]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[28]  Glyn Harman,et al.  Shifted primes without large prime factors , 1998 .

[29]  Daniel M. Gordon,et al.  Pseudoprimes on elliptic curves , 1989 .

[30]  Carl Pomerance,et al.  The pseudoprimes to 25⋅10⁹ , 1980 .

[31]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[32]  W. Browder,et al.  Annals of Mathematics , 1889 .

[33]  K. Prachar Über die Anzahl der Teiler einer natürlichen Zahl, welche die Formp−1 haben , 1955 .

[34]  H. C. Williams,et al.  Édouard Lucas and primality testing , 1999 .

[35]  Paul Erdös,et al.  On the normal number of prime factors of p-1 and some related problems concerning euler's o/-function , 1935 .

[36]  D. H. Lehmer Strong Carmichael numbers , 1976 .

[37]  D. R. Heath-Brown Almost-primes in arithmetic progressions and short intervals , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[39]  S. Yau Mathematics and its applications , 2002 .

[40]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[41]  John E. Olson,et al.  A combinatorial problem on finite Abelian groups, I , 1969 .

[42]  József Sándor,et al.  Handbook of Number Theory I , 1995 .

[43]  C. Pomerance,et al.  The distribution of Lucas and elliptic pseudoprimes , 1991 .

[44]  B. M. Fulk MATH , 1992 .

[45]  C. Pomerance A note on the least prime in an arithmetic progression , 1980 .

[46]  Oystein Ore,et al.  Number Theory and Its History , 1949 .

[47]  W. H. Elliptic Curves and Number-theoretic Algorithms , 2022 .

[48]  J. Chernick On Fermat's simple theorem , 1939 .

[49]  R. D. Carmichael Note on a new number theory function , 1910 .

[50]  C. Caldwell Mathematics of Computation , 1999 .

[51]  S. Wagstaff Greatest of the least primes in arithmetic progressions having a given modulus , 1979 .

[52]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[53]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[54]  Jean-Pierre Serre The Large Sieve , 1997 .

[55]  Glyn Harman WATT'S MEAN VALUE THEOREM AND CARMICHAEL NUMBERS , 2008 .

[56]  E. C. Titchmarsh A divisor problem , 1930 .

[57]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[58]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .

[59]  Wieb Bosma,et al.  Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.

[60]  van P. Emde Boas,et al.  A combinatorial problem on finite abelian groups, 3 , 1967 .

[61]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[62]  R. Carmichael On Composite Numbers P Which Satisfy the Fermat Congruence a P-1 ≡1 mod P , 1912 .

[63]  H. Davenport Multiplicative Number Theory , 1967 .

[64]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[65]  Siguna Müller,et al.  On the existence and non-existence of elliptic pseudoprimes , 2009, Math. Comput..

[66]  C.-A. Laisant,et al.  L’Intermédiaire des mathématiciens , 1893 .

[67]  Kevin S. McCurley The least $r$-free number in an arithmetic progression , 1986 .