INFINITUDE OF ELLIPTIC CARMICHAEL NUMBERS
暂无分享,去创建一个
[1] Elliptic Carmichael Numbers and Elliptic Korselt Criteria , 2011, 1108.3830.
[2] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[3] Roy Meshulam. An uncertainty inequality and zero subsums , 1990, Discret. Math..
[4] A. Granville. Least primes in arithmetic progressions , 1989 .
[5] M. Ward. The law of repetition of primes in an elliptic divisibility sequence , 1948 .
[6] Joe Kilian,et al. Almost all primes can be quickly certified , 1986, STOC '86.
[7] D. M. Gordon. On the number of elliptic pseudoprimes , 1989 .
[8] C. Pomerance,et al. ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS , 2010, Journal of the Australian Mathematical Society.
[9] A. Rotkiewicz,et al. On strong pseudoprimes in arithmetic progressions , 1980 .
[10] Chantal David,et al. Pseudoprime Reductions of Elliptic Curves , 2010, Canadian Journal of Mathematics.
[11] KAISA MATOMÄKI. CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS , 2013, Journal of the Australian Mathematical Society.
[12] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[13] Editors , 1986, Brain Research Bulletin.
[14] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[15] D. Chudnovsky,et al. Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .
[16] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] J. Cassels. Lectures on elliptic curves , 1991 .
[19] Carl Pomerance,et al. POPULAR VALUES OF EULER'S FUNCTION , 1980 .
[20] Carl Pomerance,et al. On the difficulty of finding reliable witnesses , 1994, ANTS.
[21] Morgan Ward,et al. Memoir on Elliptic Divisibility Sequences , 1948 .
[22] Wang Wei. On the least prime in an arithmetic progression , 1991 .
[23] D. R. Heath-Brown. Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .
[24] Matt Green. The Distribution of Pseudoprimes , 2003 .
[25] M. Murty,et al. Elliptic Pseudoprimes , 2010 .
[26] H. Mikawa,et al. Almost-primes in arithmetic progressions and short intervals , 1989 .
[27] Verzekeren Naar Sparen,et al. Cambridge , 1969, Humphrey Burton: In My Own Time.
[28] Glyn Harman,et al. Shifted primes without large prime factors , 1998 .
[29] Daniel M. Gordon,et al. Pseudoprimes on elliptic curves , 1989 .
[30] Carl Pomerance,et al. The pseudoprimes to 25⋅10⁹ , 1980 .
[31] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[32] W. Browder,et al. Annals of Mathematics , 1889 .
[33] K. Prachar. Über die Anzahl der Teiler einer natürlichen Zahl, welche die Formp−1 haben , 1955 .
[34] H. C. Williams,et al. Édouard Lucas and primality testing , 1999 .
[35] Paul Erdös,et al. On the normal number of prime factors of p-1 and some related problems concerning euler's o/-function , 1935 .
[36] D. H. Lehmer. Strong Carmichael numbers , 1976 .
[37] D. R. Heath-Brown. Almost-primes in arithmetic progressions and short intervals , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.
[38] I. G. BONNER CLAPPISON. Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.
[39] S. Yau. Mathematics and its applications , 2002 .
[40] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[41] John E. Olson,et al. A combinatorial problem on finite Abelian groups, I , 1969 .
[42] József Sándor,et al. Handbook of Number Theory I , 1995 .
[43] C. Pomerance,et al. The distribution of Lucas and elliptic pseudoprimes , 1991 .
[44] B. M. Fulk. MATH , 1992 .
[45] C. Pomerance. A note on the least prime in an arithmetic progression , 1980 .
[46] Oystein Ore,et al. Number Theory and Its History , 1949 .
[47] W. H.. Elliptic Curves and Number-theoretic Algorithms , 2022 .
[48] J. Chernick. On Fermat's simple theorem , 1939 .
[49] R. D. Carmichael. Note on a new number theory function , 1910 .
[50] C. Caldwell. Mathematics of Computation , 1999 .
[51] S. Wagstaff. Greatest of the least primes in arithmetic progressions having a given modulus , 1979 .
[52] Hugh L. Montgomery,et al. Multiplicative Number Theory I: Classical Theory , 2006 .
[53] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[54] Jean-Pierre Serre. The Large Sieve , 1997 .
[55] Glyn Harman. WATT'S MEAN VALUE THEOREM AND CARMICHAEL NUMBERS , 2008 .
[56] E. C. Titchmarsh. A divisor problem , 1930 .
[57] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[58] A. Atkin,et al. ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .
[59] Wieb Bosma,et al. Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.
[60] van P. Emde Boas,et al. A combinatorial problem on finite abelian groups, 3 , 1967 .
[61] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[62] R. Carmichael. On Composite Numbers P Which Satisfy the Fermat Congruence a P-1 ≡1 mod P , 1912 .
[63] H. Davenport. Multiplicative Number Theory , 1967 .
[64] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[65] Siguna Müller,et al. On the existence and non-existence of elliptic pseudoprimes , 2009, Math. Comput..
[66] C.-A. Laisant,et al. L’Intermédiaire des mathématiciens , 1893 .
[67] Kevin S. McCurley. The least $r$-free number in an arithmetic progression , 1986 .