On Minimal-Perimeter Lattice Animals
暂无分享,去创建一个
[1] S. J. Cyvin,et al. What do We Know about the Numbers of Benzenoid Isomers? , 1990 .
[2] M. Eden. A Two-dimensional Growth Process , 1961 .
[3] Gill Barequet,et al. Minimal-Perimeter Polyominoes: Chains, Roots, and Algorithms , 2019, CALDAM.
[4] Andrei Asinowski,et al. Enumerating Polyominoes with Fixed Perimeter Defect , 2017, Electron. Notes Discret. Math..
[5] I. Jensen,et al. LETTER TO THE EDITOR: Statistics of lattice animals (polyominoes) and polygons , 2000, cond-mat/0007238.
[6] Israel A. Wagner,et al. On Minimal Perimeter Polyminoes , 2006, DGCI.
[7] Gabor Fulep,et al. Polyiamonds and Polyhexes with Minimum Site-Perimeter and Achievement Games , 2010, Electron. J. Comb..
[8] Andrei Asinowski,et al. Polycubes with Small Perimeter Defect , 2018, Annals of Combinatorics.
[9] Da-Lun Wang,et al. Discrete Isoperimetric Problems , 1977 .
[10] Alfred M. Bruckstein,et al. On isoperimetrically optimal polyforms , 2008, Theor. Comput. Sci..
[11] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[12] Gill Barequet,et al. Properties of Minimal-Perimeter Polyominoes , 2018, COCOON.
[13] Stephan Mertens,et al. Lattice animals: A fast enumeration algorithm and new perimeter polynomials , 1990 .
[14] Nándor Sieben. Polyominoes with minimum site-perimeter and full set achievement games , 2008, Eur. J. Comb..
[15] Jerry Ray Dias. New General Formulations for Constant-Isomer Series of Polycyclic Benzenoids , 2010 .
[16] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[17] Sven J. Cyvin,et al. Series of benzenoid hydrocarbons with a constant number of isomers , 1991 .