Pyrrolopyrrole Aza-BODIPY Analogues as Near-Infrared Chromophores and Fluorophores: Red-Shift Effects of Substituents on Absorption and Emission Spectra.

Pyrrolopyrrole aza-BODIPY analogues (PPABs) are a new class of UV/vis and near-infrared chromophores. Varying the substituents results in red-shifts of both the absorption and emission spectra. Extension of the lengths of the oligothiophene substituents from thiophene to quaterthiophene caused red-shifts of the absorption and emission from 699 and 712 nm to 809 and 853 nm, respectively. The piperidylthiophene-substituted PPAB exhibited similar red-shifts of the absorption and emission to 810 and 831 nm, respectively, although only a single thienyl component is present, because of the strong electron-donating nature of the piperidine substituent.

[1]  H. Furuta,et al.  N-Confused Porphyrin-aza-Dipyrrin Chimera: A Versatile Metal Coordination Ligand Using its Unique NH Tautomerism. , 2019, Chemistry, an Asian journal.

[2]  Franco Cacialli,et al.  Near‐Infrared (NIR) Organic Light‐Emitting Diodes (OLEDs): Challenges and Opportunities , 2019, Advanced Functional Materials.

[3]  K. Wong,et al.  Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. , 2018, Journal of materials chemistry. B.

[4]  J. Qu,et al.  Near‐Infrared Emitting Materials via Harvesting Triplet Excitons: Molecular Design, Properties, and Application in Organic Light Emitting Diodes , 2018, Advanced Optical Materials.

[5]  Ling Hong,et al.  Small‐Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices , 2018, Advanced Optical Materials.

[6]  A. Saeki,et al.  Blackening of aza-BODIPY analogues by simple dimerization: panchromatic absorption of a pyrrolopyrrole aza-BODIPY dimer , 2018 .

[7]  Svetlana V. Eliseeva,et al.  Near-infrared emitting probes for biological imaging: Organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials , 2017 .

[8]  A. Saeki,et al.  Facile synthesis of dimeric aza-BODIPY analogues from electron-deficient bislactams and their intriguing optical and electrochemical properties , 2017 .

[9]  Lingyun Wang,et al.  A facile synthesis of novel near-infrared pyrrolopyrrole aza-BODIPY luminogens with aggregation-enhanced emission characteristics. , 2017, Chemical communications.

[10]  Michael C. Heiber,et al.  Small is Powerful: Recent Progress in Solution‐Processed Small Molecule Solar Cells , 2017 .

[11]  Muhammad S. Khan,et al.  Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. , 2017, Bioorganic & medicinal chemistry.

[12]  H. Matsuoka,et al.  Polymeric Self-Assemblies with Boron-Containing Near-Infrared Dye Dimers for Photoacoustic Imaging Probes. , 2017, Biomacromolecules.

[13]  Hongjie Dai,et al.  Near-infrared fluorophores for biomedical imaging , 2017, Nature Biomedical Engineering.

[14]  H. Furuta,et al.  Benzo[c,d]indole-Containing Aza-BODIPY Dyes: Asymmetrization-Induced Solid-State Emission and Aggregation-Induced Emission Enhancement as New Properties of a Well-Known Chromophore. , 2015, Chemistry.

[15]  K. Lee,et al.  D-π-A conjugated molecules for optoelectronic applications. , 2015, Macromolecular rapid communications.

[16]  A. Saeki,et al.  Rational molecular design towards Vis/NIR absorption and fluorescence by using pyrrolopyrrole aza-BODIPY and its highly conjugated structures for organic photovoltaics. , 2015, Chemistry.

[17]  Donghoon Choi,et al.  Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. , 2015, Chemical Society reviews.

[18]  Katherine A Mazzio,et al.  The future of organic photovoltaics. , 2015, Chemical Society reviews.

[19]  D. Gryko,et al.  Diindolo[2,3-b:2',3'-f]pyrrolo[3,2-b]pyrroles as electron-rich, ladder-type fluorophores: synthesis and optical properties. , 2015, Chemistry, an Asian journal.

[20]  F. Würthner,et al.  Synthesis and properties of a new class of fully conjugated azahexacene analogues. , 2014, Angewandte Chemie.

[21]  Philippe Blanchard,et al.  Molecular Materials for Organic Photovoltaics: Small is Beautiful , 2014, Advanced materials.

[22]  D. Citterio,et al.  New Trends in Near-Infrared Fluorophores for Bioimaging , 2014, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[23]  K. Lee,et al.  Diketopyrrolopyrrole: A versatile building block for organic photovoltaic materials , 2013, Macromolecular Research.

[24]  Weihong Zhu,et al.  Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. , 2013, Chemical Society reviews.

[25]  Y. Araki,et al.  Pyrrolopyrrole aza-BODIPY analogues: a facile synthesis and intense fluorescence. , 2013, Chemical communications.

[26]  T. Stokłosa,et al.  Bright, color-tunable fluorescent dyes based on π-expanded diketopyrrolopyrroles. , 2012, Organic letters.

[27]  Shahram Hejazi,et al.  Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[28]  Peter Bäuerle,et al.  Niedermolekulare organische Halbleiter auf dem Vormarsch – Ausblick auf künftige Solartechniken , 2012 .

[29]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[30]  A. Zumbusch,et al.  Photophysics of aminophenyl substituted pyrrolopyrrole cyanines. , 2012, Physical chemistry chemical physics : PCCP.

[31]  A. Zumbusch,et al.  Pyrrolopyrrole Cyanines: Effect of Substituents on Optical Properties , 2011 .

[32]  Andreas Zumbusch,et al.  Selektive Nah-Infrarot-Chromophore : Bis(pyrrolopyrrol)-Cyanine , 2011 .

[33]  A. Zumbusch,et al.  Selective NIR chromophores: bis(pyrrolopyrrole) cyanines. , 2011, Angewandte Chemie.

[34]  Xin Cai,et al.  Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. , 2011, ACS nano.

[35]  J. Pfenninger,et al.  The synthesis and properties of 1,4‐diketo‐pyrrolo[3,4‐C]pyrroles , 2010 .

[36]  A. Zumbusch,et al.  Asymmetric PPCys: strongly fluorescing NIR labels. , 2010, Chemical communications.

[37]  Samuel Achilefu,et al.  Long fluorescence lifetime molecular probes based on near infrared pyrrolopyrrole cyanine fluorophores for in vivo imaging. , 2009, Biophysical journal.

[38]  A. Zumbusch,et al.  Pyrrolopyrrole cyanine dyes: a new class of near-infrared dyes and fluorophores. , 2009, Chemistry.

[39]  Andreas Zumbusch,et al.  NIR-Farbstoffe und NIR-Fluorophore aus Diketopyrrolopyrrolen , 2007 .

[40]  A. Zumbusch,et al.  Near-infrared dyes and fluorophores based on diketopyrrolopyrroles. , 2007, Angewandte Chemie.

[41]  Z. Hao,et al.  Latent pigments activated by heat , 1997, Nature.

[42]  Z. Hao,et al.  Some aspects of organic pigments , 1997 .