Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects

Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic selffocusing if prepulses are cut-off by a contrast ratio higher than 10 8 , resulting in quasi-neutral directed plasma blocks with deuterium tritium ion current densities above 10 11 A/cm 2 . This is still not high enough for ignition of solid-state density deuterium tritium because the energy flux density E* has to be higher than the threshold of 4 � 10 8 J/cm 2 obtained within the theory of Chu (1972). A revision of this evaluation shows a reduction of this threshold by a factor 20 if the later discovered inhibition factors for thermal conduction because of double layer effects as well as the shorter stopping lengths of the alpha particles due to collective effects are taken into account. Under these relaxed conditions, the parameters of nonlinear force generated blocks of dielectrically increased thickness for deuterium tritium ignition with directed ions of energies near the 80 keV resonances are discussed.

[1]  Miroslav Pfeifer,et al.  Effects of ps and ns laser pulses for giant ion source , 2002 .

[2]  Heinrich Hora,et al.  Skin-Depth Theory Explaining Anomalous Picosecond-Terawatt Laser Plasma Interaction II , 2003 .

[3]  Arnulf Schlüter,et al.  Dynamik des Plasmas I , 1950 .

[4]  Eric Esarey,et al.  Gamma-neutron activation experiments using laser wakefield accelerators , 2001 .

[5]  F. Schäfer On some properties of axicons , 1986 .

[6]  A. Andreev,et al.  Enhanced laser ion acceleration from mass-limited targets , 2008 .

[7]  H. Hora,et al.  Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition , 2009 .

[8]  Harold Osterberg Propagation of Plane Electromagnetic Waves in Inhomogeneous Media , 1958 .

[9]  O. Rosmej,et al.  Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter , 2007 .

[10]  R. Evans Ion heating due to ionization and recombination , 2008 .

[11]  Karel Rohlena,et al.  Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion , 2005, Journal of Plasma Physics.

[12]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[13]  Miroslav Pfeifer,et al.  The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams , 2007 .

[14]  Agustin Lifschitz,et al.  Onset of Coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern , 2008 .

[15]  H. Hora,et al.  Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction , 2005 .

[16]  Ming-Sheng Chu,et al.  Thermonuclear Reaction Waves at High Densities , 1972 .

[17]  Heinrich Hora,et al.  Laser Plasma Physics: Forces and the Nonlinearity Principle , 2000 .

[18]  A. Einstein Zur Quantentheorie der Strahlung , 1916 .

[19]  Erich S. Welbel A Note on the Confinement of a Plasma by R.F. Fields , 1958 .

[20]  G. Miley,et al.  Nuclear magic numbers based on a quarklike model is compared with the Boltzmann distribution model from nuclear abundance in the universe and low energy nuclear reactions , 2008 .

[21]  K. Mima,et al.  Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets , 2008 .

[22]  Baohua Feng,et al.  EFFECTS OF A PREPULSE ON GAMMA -RAY RADIATION PRODUCED BY A FEMTOSECOND LASER WITH ONLY 5-MJ ENERGY , 1998 .

[23]  J. Moody,et al.  High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments , 1999 .

[24]  S. Dean The Rationale for an Expanded Inertial Fusion Energy Program , 2008 .

[25]  Heinrich Hora,et al.  Theory of relativistic self-focusing of laser radiation in plasmas , 1975 .

[26]  L. Torrisi,et al.  Self-focusing effect in Au-target induced by high power pulsed laser at PALS , 2008 .

[27]  Jie Zhang,et al.  Fast ignition by laser driven particle beams of very high intensity , 2007 .

[28]  H. Hora,et al.  Production of ultrahigh ion current densities at skin-layer subrelativistic laser–plasma interaction , 2004 .

[29]  G. Miley,et al.  Threshold for laser driven block ignition for fusion energy from hydrogen boron-11 , 2009 .

[30]  Jie Zhang,et al.  Block Ignition Inertial Confinement Fusion (ICF) for Space Propulsion , 2008 .

[31]  J. L. Bobin,et al.  Nuclear Fusion Reactions in Fronts Propagating in Solid DT , 1974 .

[32]  M. Murakami,et al.  Equation of state and optimum compression in inertial fusion energy , 2007 .

[33]  Scott C. Wilks,et al.  Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing , 2005 .

[34]  Ghatak,et al.  New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. , 1985, Physical review. A, General physics.

[35]  O. Klimo,et al.  Particle simulation of acceleration of quasineutral plasma blocks by short laser pulses , 2006 .

[36]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[37]  A. A. Kozlov,et al.  Investigations of ion streams emitted from plasma produced with a high-power picosecond laser , 1999 .

[38]  Clark,et al.  Photonuclear physics when a multiterawatt laser pulse interacts with solid targets , 2000, Physical review letters.

[39]  Gerard Mourou,et al.  Ultraintense Lasers and their Applications , 2001 .

[40]  Heinrich Hora,et al.  Nonlinear Confining and Deconfining Forces Associated with the Interaction of Laser Radiation with Plasma , 1969 .

[41]  M. Yu,et al.  Electron acceleration by high current-density relativistic electron bunch in plasmas , 2007 .

[42]  H. Hora,et al.  Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor , 2008 .

[43]  Xiantu He,et al.  Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses , 2008 .

[44]  W. Manheimer,et al.  Effects of viscosity in modeling laser fusion implosions , 2007 .

[45]  H. Hora,et al.  Single event laser fusion using ns-MJ laser pulses , 2005 .

[46]  Stephen D. Jacobs,et al.  Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .

[47]  R. Sauerbrey,et al.  Acceleration in femtosecond laser-produced plasmas , 1996 .

[48]  M. Yu,et al.  Laser-produced energetic electron transport in overdense plasmas by wire guiding , 2008 .

[49]  K. Imasaki,et al.  An approach of laser induced nuclear fusion , 2008 .

[50]  Dmitry Varentsov,et al.  Present and future perspectives for high energy density physics with intense heavy ion and laser beams , 2005 .

[51]  F. Winterberg Lasers for inertial confinement fusion driven by high explosives , 2008 .

[52]  H. Hora New aspects for fusion energy using inertial confinement , 2007 .

[53]  H. Hora From laser produced Debye layers in plasma to a theory of nuclear forces and quark-gluon plasmas , 2006 .

[54]  H. Hora,et al.  Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration , 2008 .

[55]  N. Johnson,et al.  Equilibrium ignition for ICF capsules , 2008 .

[56]  C. Fälthammar Laboratory and near-earth space plasma as a key to the plasma universe , 1988 .

[57]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[58]  Sándor Szatmári,et al.  Simplified laser system for the generation of 60 fs pulses at 248 nm , 1988 .

[59]  R. Whitlock,et al.  Laser-Produced-Plasma Energy Transport through Plastic Films, , 1977 .

[60]  Heinrich Hora,et al.  Laser Interaction and Related Plasma Phenomena , 2005 .

[61]  J. F. Clarke,et al.  Hot-ion distribution function in the Oak Ridge tokamak , 1974 .

[62]  Heinrich Hora,et al.  Smoothing and stochastic pulsation at high power laser-plasma interaction , 2006 .

[63]  M. Bell Measurements of plasma rotation in tokamak LT-3 , 1979 .

[64]  G. Miley,et al.  Volume Ignition for Inertial Confinement Fusion , 1992 .

[65]  P. Lalousis,et al.  On the surface tension of plasmas , 1989 .

[66]  H. Hora,et al.  Increased Nuclear Fusion Yields of Inertially Confined DT Plasma due to Reheat , 1978 .

[67]  John Lindl The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn , 2008 .

[68]  P. Lalousis,et al.  Analysis of the inverted double layers produced by nonlinear forces in a laser-produced plasma , 1984 .

[69]  Tan Wei-han,et al.  Thermal flux limitation and thermal conduction inhibition in laser plasma , 1985 .

[70]  Postle,et al.  Longitudinal field components for laser beams in vacuum. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[71]  G. Miley,et al.  Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks , 2009 .

[72]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[73]  Heinrich Hora,et al.  The transient electrodynamic forces at laser–plasma interaction , 1985 .

[74]  Hiroshi Azechi,et al.  High-density compression experiments at ILE, Osaka , 1991 .

[75]  K. Rohlena,et al.  PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface , 2008 .

[76]  Allan D. Pierce,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1981 .

[77]  L. Spitzer Physics of fully ionized gases , 1956 .

[78]  Hiroshi Azechi,et al.  Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions , 1998, Journal of Plasma Physics.

[79]  J H Nuckolls,et al.  Future of Inertial Fusion Energy , 2002 .

[80]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[81]  H. Hora,et al.  Studies on laser-driven generation of fast high-density plasma blocks for fast ignition , 2006 .

[82]  H. Hora,et al.  Pellet fusion gain calculations modified by electric double layers and by spin polarized nuclei , 1984 .

[83]  B. Bigot Inertial fusion science in Europe , 2006 .

[84]  J. Martínez-Val,et al.  Volume ignition targets for heavy-ion inertial fusion , 1994 .

[85]  H. Schwoerer,et al.  Laser transmutation of iodine-129 , 2003 .

[86]  T. Schlegel,et al.  Laser accelerated ions and electron transport in ultra-intense laser matter interaction , 2005 .

[87]  Hoffmann,et al.  Energy loss of heavy ions in a plasma target. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[88]  Edward I. Moses,et al.  The ICF Status and Plans in the United States , 2005 .

[89]  M. Basko Spark and volume ignition of DT and D2 microspheres , 1990 .

[90]  D. Gabor Wave theory of plasmas , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[91]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[92]  P. Lalousis,et al.  First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction , 1983 .

[93]  Heinrich Hora,et al.  Double Layers in Laser Produced Plasmas , 1989 .

[94]  K. Razumova Results from T-7, T-10, T-11 and TM-4 Tokamaks , 1984 .

[95]  B. Boreham,et al.  Debye-length discrimination of nonlinear laser forces acting on electrons in tenuous plasmas , 1979 .

[96]  H. Hora Developments in inertial fusion energy and beam fusion at magnetic confinement , 2004 .

[97]  Heinrich Hora,et al.  Physics of laser driven plasmas , 1981 .