Formation and manipulation of optomechanical chaos via a bichromatic driving

We propose a scheme to efficiently manipulate optomechanical systems into and out of chaotic regimes. Here the optical system is coherently driven by a continuous-wave bichromatic laser field consisting of a pump field and a probe field, where the beat frequency of the bichromatic components plays an important role in controlling the appearance of chaotic motion and the corresponding chaotic dynamics. With state-of-the-art experimental parameters, we find that a broad chaos-absent window with sharp edges can be formed by properly adjusting the powers of the bichromatic input field. Moreover, the lifetime of the transient chaos and the chaotic degree of the optomechanical system can be well tuned simply by changing the initial phases of the bichromatic input field. This investigation may be useful for harnessing the optomechanical nonlinearity to manipulate rich chaotic dynamics and find applications in chaos-based communication.