Bit-complexity estimates in geometric programming, and application to the polynomial-time computation of the spectral radius of nonnegative tensors

. We show that the spectral radius of nonnegative tensors can be approximated within ε error in polynomial time. This implies that the maximum of a nonnegative homogeneous d -form in the unit ball with respect to d -H¨older norm can be approximated in polynomial time. These results are deduced by establishing bit-size estimates for the near-minimizers of functions given by suprema of finitely many log-Laplace transforms of discrete nonnegative measures on R n . Hence, some known upper bounds for the clique number of hypergraphs are polynomially computable.

[1]  Lek-Heng Lim,et al.  Tensors in computations , 2021, Acta Numerica.

[2]  S. Friedland,et al.  Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices. , 2021, Physical review letters.

[3]  S. Friedland Tensor optimal transport, distance between sets of measures and tensor scaling , 2020, ArXiv.

[4]  Nisheeth K. Vishnoi,et al.  On the computability of continuous maximum entropy distributions with applications , 2020, STOC.

[5]  Giuseppe Carlo Calafiore,et al.  A Universal Approximation Result for Difference of Log-Sum-Exp Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[6]  S. Friedland,et al.  Spectral norm of a symmetric tensor and its computation , 2018, Math. Comput..

[7]  S. Gaubert,et al.  Inequalities for the spectral radii and spectral norms of nonnegative tensors , 2018, 1804.00204.

[8]  Robin J. Wilson The École Polytechnique , 2017 .

[9]  S. Gaubert,et al.  The Operator Approach to Entropy Games ∗ , 2017 .

[10]  Frank Vallentin,et al.  On the Turing Model Complexity of Interior Point Methods for Semidefinite Programming , 2015, SIAM J. Optim..

[11]  Silouanos Brazitikos Geometry of Isotropic Convex Bodies , 2014 .

[12]  Jiawang Nie,et al.  All Real Eigenvalues of Symmetric Tensors , 2014, SIAM J. Matrix Anal. Appl..

[13]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[14]  Marcello Pelillo,et al.  New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.

[15]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[16]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[17]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[18]  G. Golub,et al.  A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.

[19]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[20]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[21]  S. Gaubert,et al.  The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.

[22]  J. Borwein,et al.  On the complexity of familiar functions and numbers , 1988 .

[23]  Xuan Li,et al.  A Survey on Tensor Techniques and Applications in Machine Learning , 2019, IEEE Access.

[24]  L. Qi,et al.  The clique and coclique numbers' bounds based on the H-eigenvalues of uniform hypergraphs , 2014 .

[25]  R. Nussbaum Convexity and log convexity for the spectral radius , 1986 .

[26]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[27]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[28]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[29]  H. Wilf The Eigenvalues of a Graph and Its Chromatic Number , 1967 .

[30]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[31]  J. Kingman A convexity property of positive matrices , 1961 .

[32]  S. Banach Über homogene Polynome in ($L^{2}$) , 1938 .