Verb Metaphor Detection via Contextual Relation Learning

Correct natural language understanding requires computers to distinguish the literal and metaphorical senses of a word. Recent neural models achieve progress on verb metaphor detection by viewing it as sequence labeling. In this paper, we argue that it is appropriate to view this task as relation classification between a verb and its various contexts. We propose the Metaphor-relation BERT (MrBERT) model, which explicitly models the relation between a verb and its grammatical, sentential and semantic contexts. We evaluate our method on the VUA, MOH-X and TroFi datasets. Our method gets competitive results compared with state-of-the-art approaches.

[1]  Beata Beigman Klebanov,et al.  A Report on the 2020 VUA and TOEFL Metaphor Detection Shared Task , 2020, FIGLANG.

[2]  Carlo Strapparava,et al.  Metaphor: A Computational Perspective by Tony Veale, Ekaterina Shutova and Beata Beigman Klebanov , 2016, CL.

[3]  Anoop Sarkar,et al.  A Clustering Approach for Nearly Unsupervised Recognition of Nonliteral Language , 2006, EACL.

[4]  Tyler Marghetis,et al.  Literal and Metaphorical Senses in Compositional Distributional Semantic Models , 2016, ACL.

[5]  Dan Fass,et al.  met*: A Method for Discriminating Metonymy and Metaphor by Computer , 1991, CL.

[6]  Shiva Taslimipoor,et al.  Verbal Multiword Expressions for Identification of Metaphor , 2020, ACL.

[7]  Ekaterina Shutova,et al.  Being neighbourly: Neural metaphor identification in discourse , 2020, FIGLANG.

[8]  Ekaterina Shutova,et al.  Grasping the Finer Point: A Supervised Similarity Network for Metaphor Detection , 2017, EMNLP.

[9]  Dongwon Lee,et al.  MelBERT: Metaphor Detection via Contextualized Late Interaction using Metaphorical Identification Theories , 2021, NAACL.

[10]  Jeffrey Ling,et al.  Matching the Blanks: Distributional Similarity for Relation Learning , 2019, ACL.

[11]  Danqi Chen,et al.  A Fast and Accurate Dependency Parser using Neural Networks , 2014, EMNLP.

[12]  R. Gibbs,et al.  MIP: A method for identifying metaphorically used words in discourse , 2007 .

[13]  Martha Palmer,et al.  Linguistic Analysis Improves Neural Metaphor Detection , 2019, CoNLL.

[14]  Eunsol Choi,et al.  Neural Metaphor Detection in Context , 2018, EMNLP.

[15]  Martha Lewis,et al.  Modelling the interplay of metaphor and emotion through multitask learning , 2019, EMNLP.

[16]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[17]  Michael Mohler,et al.  Semantic Signatures for Example-Based Linguistic Metaphor Detection , 2013 .

[18]  Saif Mohammad,et al.  Metaphor as a Medium for Emotion: An Empirical Study , 2016, *SEMEVAL.

[19]  Yulia Tsvetkov,et al.  Metaphor Detection with Cross-Lingual Model Transfer , 2014, ACL.

[20]  Yair Neuman,et al.  Literal and Metaphorical Sense Identification through Concrete and Abstract Context , 2011, EMNLP.

[21]  Gerard J. Steen,et al.  A method for linguistic metaphor identification : from MIP to MIPVU , 2010 .

[22]  Simone Teufel,et al.  Metaphor Corpus Annotated for Source - Target Domain Mappings , 2010, LREC.

[23]  Katja Markert,et al.  An analysis of language models for metaphor recognition , 2020, COLING.

[24]  Stephen Clark,et al.  Modelling metaphor with attribute-based semantics , 2017, EACL.

[25]  Jean Maillard,et al.  Black Holes and White Rabbits: Metaphor Identification with Visual Features , 2016, NAACL.

[26]  Yulia Tsvetkov,et al.  Cross-Lingual Metaphor Detection Using Common Semantic Features , 2013 .

[27]  Yorick Wilks,et al.  A Preferential, Pattern-Seeking, Semantics for Natural Language Inference , 1975, Artif. Intell..

[28]  Beata Beigman Klebanov,et al.  Go Figure! Multi-task transformer-based architecture for metaphor detection using idioms: ETS team in 2020 metaphor shared task , 2020, FIGLANG.

[29]  Frank Guerin,et al.  End-to-End Sequential Metaphor Identification Inspired by Linguistic Theories , 2019, ACL.

[30]  Fumiyo Fukumoto,et al.  DeepMet: A Reading Comprehension Paradigm for Token-level Metaphor Detection , 2020, FIGLANG.

[31]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[32]  Rui Mao,et al.  Word Embedding and WordNet Based Metaphor Identification and Interpretation , 2018, ACL.

[33]  Yorick Wilks,et al.  Making Preferences More Active , 1978, Artif. Intell..

[34]  Pragglejaz Group MIP: A Method for Identifying Metaphorically Used Words in Discourse , 2007 .

[35]  Lin Sun,et al.  Unsupervised Metaphor Identification Using Hierarchical Graph Factorization Clustering , 2013, NAACL.

[36]  Lizhen Liu,et al.  A Knowledge Graph Embedding Approach for Metaphor Processing , 2021, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[37]  Beata Beigman Klebanov,et al.  A Report on the 2018 VUA Metaphor Detection Shared Task , 2018, Fig-Lang@NAACL-HLT.