ISOMORPHISMS UP TO BOUNDED TORSION BETWEEN RELATIVE $K_{0}$ -GROUPS AND CHOW GROUPS WITH MODULUS

Abstract The purpose of this note is to establish isomorphisms up to bounded torsion between relative $K_{0}$ -groups and Chow groups with modulus as defined by Binda and Saito.

[1]  Ryomei Iwasa Relative K0 and relative cycle class map , 2017, Journal of Pure and Applied Algebra.

[2]  Wataru Kai,et al.  CHERN CLASSES WITH MODULUS , 2016, Nagoya Mathematical Journal.

[3]  Hiroyasu Miyazaki Cube invariance of higher Chow groups with modulus , 2016, Journal of Algebraic Geometry.

[4]  F. Binda,et al.  Zero cycles with modulus and zero cycles on singular varieties , 2015, Compositio Mathematica.

[5]  F. Binda,et al.  RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS , 2014, Journal of the Institute of Mathematics of Jussieu.

[6]  Jinhyung Park,et al.  Moving lemma for additive higher Chow groups , 2012 .

[7]  C. Soulé,et al.  Intersection theory using Adams operations , 1987 .

[8]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[9]  C. Soulé Opérations En K-Théorie Algébrique , 1985, Canadian Journal of Mathematics.

[10]  Charles Kratzer λ-Structure enK-théorie algébrique , 1980 .

[11]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[12]  M. Atiyah,et al.  Group representations, λ-rings and the J-homomorphism , 1969 .

[13]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[14]  M. Levine Lambda operations , K theory and motivic cohomology , 2005 .

[15]  H. O. Erdin Characteristic Classes , 2004 .

[16]  William Fulton,et al.  Intersection theory, Second Edition , 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[17]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[18]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[19]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .