Passive Brain–Computer Interfaces

Passive brain–computer interfaces (passive BCI), also named implicit BCI, provide information from user mental activity to a computerized application without the need for the user to control his brain activity. Passive BCI seem particularly relevant in the context of music creation where they can provide novel information to adapt the music creation process (e.g., user mental concentration state to adapt the music tempo). In this chapter, we present an overview of the use of passive BCI in different contexts. We describe how passive BCI are used and the commonly employed signal processing schemes.

[1]  Dirk Heylen,et al.  Brain-Computer Interfacing and Games , 2010, Brain-Computer Interfaces.

[2]  Anton Nijholt,et al.  Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games , 2009, INTETAIN.

[3]  Desney S. Tan,et al.  Combining brain computer interfaces with vision for object categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Glenn F. Wilson,et al.  Performance and Psychophysiological Measures of Fatigue Effects on Aviation Related Tasks of Varying Difficulty , 2007 .

[5]  Reinhold Scherer,et al.  Brain-Computer Interfaces used for Virtual Reality Control , 2010 .

[6]  Robert J. K. Jacob,et al.  Designing a passive brain computer interface using real time classification of functional near-infrared spectroscopy , 2013, Int. J. Auton. Adapt. Commun. Syst..

[7]  José del R. Millán,et al.  Simultaneous Real-Time Detection of Motor Imagery and Error-Related Potentials for Improved BCI Accuracy , 2008 .

[8]  Audrey Girouard Adaptive brain-computer interface , 2009, CHI Extended Abstracts.

[9]  Youngrae Kim,et al.  My Own Clips: Automatic clip generation from watched television programs by using EEG-based user response data , 2012, 2012 IEEE 16th International Symposium on Consumer Electronics.

[10]  Anton Nijholt,et al.  Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games , 2009, INTETAIN.

[11]  P. Lang International Affective Picture System (IAPS) : Technical Manual and Affective Ratings , 1995 .

[12]  Anton Nijholt,et al.  Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments , 2009, INTETAIN.

[13]  Alicia Heraz,et al.  Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves , 2007 .

[14]  John J. B. Allen,et al.  Frontal EEG asymmetry as a moderator and mediator of emotion , 2004, Biological Psychology.

[15]  Robert J. K. Jacob,et al.  Distinguishing Difficulty Levels with Non-invasive Brain Activity Measurements , 2009, INTERACT.

[16]  Christa Neuper,et al.  Brain-Computer Interface Systems Used for Virtual Reality Control , 2011 .

[17]  Dirk Heylen,et al.  Bacteria Hunt , 2010, Journal on Multimodal User Interfaces.

[18]  Sebastian Bosse,et al.  Toward a Direct Measure of Video Quality Perception Using EEG , 2012, IEEE Transactions on Image Processing.

[19]  Zhilin Zhang,et al.  Evolving Signal Processing for Brain–Computer Interfaces , 2012, Proceedings of the IEEE.

[20]  Robert Oostenveld,et al.  Estimating workload using EEG spectral power and ERPs in the n-back task , 2012, Journal of neural engineering.

[21]  Desney S. Tan,et al.  Using a low-cost electroencephalograph for task classification in HCI research , 2006, UIST.

[22]  José del R. Millán,et al.  Improving Human Performance in a Real Operating Environment through Real-Time Mental Workload Detection , 2007 .

[23]  A Gemignani,et al.  Changes in autonomic and EEG patterns induced by hypnotic imagination of aversive stimuli in man , 2000, Brain Research Bulletin.

[24]  Scott Makeig,et al.  High-frequency Broadband Modulations of Electroencephalographic Spectra , 2009, Front. Hum. Neurosci..

[25]  Thorsten O. Zander,et al.  Utilizing Secondary Input from Passive Brain-Computer Interfaces for Enhancing Human-Machine Interaction , 2009, HCI.

[26]  P. Sajda,et al.  Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[27]  Desney S. Tan,et al.  Human-aided computing: utilizing implicit human processing to classify images , 2008, CHI.

[28]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[29]  Ellen S. Wilschut,et al.  Brain–machine interfaces in space: Using spontaneous rather than intentionally generated brain signals , 2010 .

[30]  Stefan Haufe,et al.  The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology , 2010, Front. Neurosci..

[31]  Luca T. Mainardi,et al.  Online Detection of P300 and Error Potentials in a BCI Speller , 2010, Comput. Intell. Neurosci..

[32]  J. Millán,et al.  Error-related EEG potentials in brain-computer interfaces , 2007 .

[33]  Jan B. F. van Erp,et al.  Brain-Based Indices for User System Symbiosis , 2010, Brain-Computer Interfaces.

[34]  Christian Mühl,et al.  EEG analysis for implicit tagging of video data , 2009, 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops.

[35]  Nico M Schmidt,et al.  Online detection of error-related potentials boosts the performance of mental typewriters , 2012, BMC Neuroscience.

[36]  Tanja Schultz,et al.  Online Workload Recognition from EEG Data during Cognitive Tests and Human-Machine Interaction , 2010, KI.

[37]  Jonas K. Olofsson,et al.  Affective picture processing: An integrative review of ERP findings , 2008, Biological Psychology.

[38]  Dirk Heylen,et al.  Bacteria Hunt: A multimodal, multiparadigm BCI game , 2010 .

[39]  A. Pope,et al.  Biocybernetic system evaluates indices of operator engagement in automated task , 1995, Biological Psychology.