Conditions for Optimality in the Infinite-Horizon Portfolio-cum-Saving Problem with Semimartingale Investments

A model of optimal accumulation of capital and portfolio choice over an infinite horizon in continuous time is formulated in which the vector process representing returns to investments is a general semimartingale. Methods of stochastic calculus and calculus of variations are used to obtain necessary and sufficient conditions for optimality involving martingale properties of the ‘shadow price’ processes associated with alternative portfolio-cum-saving plans. The relationship between such conditions and ‘portfolio equations’ is investigated. The results are applied to special cases where the returns process has stationary independent increments and the utility function has the ‘discounted relative risk aversion’ form.

[1]  W. Jevons Theory of Political Economy , 1965 .

[2]  J. Jacod,et al.  Processus ponctuels et martingales: résultats récents sur la modélisation et le filtrage , 1977 .

[3]  L. Foldes Optimal saving and risk in continuous time , 1978 .

[4]  W. Brock,et al.  Dynamics under Uncertainty , 1979 .

[5]  Suresh P. Sethi,et al.  Explicit Solution of a General Consumption/Investment Problem , 1986, Math. Oper. Res..

[6]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[7]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[8]  S. Ross,et al.  AN INTERTEMPORAL GENERAL EQUILIBRIUM MODEL OF ASSET PRICES , 1985 .

[9]  Michel Loève,et al.  Probability Theory I , 1977 .

[10]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[11]  John C. Cox,et al.  A variational problem arising in financial economics , 1991 .

[12]  C. Doléans-Dade,et al.  Quelques applications de la formule de changement de variables pour les semimartingales , 1970 .

[13]  J. Harrison,et al.  A stochastic calculus model of continuous trading: Complete markets , 1983 .

[14]  J. Zabczyk Lectures in stochastic control , 1983 .

[15]  L. Foldes Martingale conditions for optimal saving-discrete time , 1978 .

[16]  Kerry Back,et al.  The shadow price of information in continuous time decision problems , 1987 .

[17]  N. H. Hakansson. OPTIMAL INVESTMENT AND CONSUMPTION STRATEGIES UNDER RISK FOR A CLASS OF UTILITY FUNCTIONS11This paper was presented at the winter meeting of the Econometric Society, San Francisco, California, December, 1966. , 1970 .

[18]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[19]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[20]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[21]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[22]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[23]  Knut K. Aase,et al.  Optimum portfolio diversification in a general continuous-time model , 1984 .

[24]  J. Bismut Conjugate convex functions in optimal stochastic control , 1973 .

[25]  K. Aase Ruin problems and myopic portfolio optimization in continuous trading , 1986 .

[26]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[27]  J. H. Schuppen,et al.  Transformation of Local Martingales Under a Change of Law , 1974 .

[28]  Stochastic equilibrium discounting , 1987 .