Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals

We propose fast algorithms that speed up or improve the performance of recovering spectrally sparse signals from un-derdetermined measurements. Our algorithms are based on a non-convex approach of using alternating projected gradient descent for structured matrix recovery. We apply this approach to two formulations of structured matrix recovery: Hankel and Toeplitz mosaic structured matrix, and Hankel structured matrix. Our methods provide better recovery performance, and faster signal recovery than existing algorithms, including atomic norm minimization.

[1]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[2]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[5]  Robert F. H. Fischer,et al.  Precoding and Signal Shaping for Digital Transmission , 2002 .

[6]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[9]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[10]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[11]  Gongguo Tang,et al.  Sparse recovery over continuous dictionaries-just discretize , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[12]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[13]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[14]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[15]  Weiyu Xu,et al.  Block Iterative Reweighted Algorithms for Super-Resolution of Spectrally Sparse Signals , 2015, IEEE Signal Processing Letters.

[16]  Jian-Feng Cai,et al.  Projected Wirtinger Gradient Descent for Low-Rank Hankel Matrix Completion in Spectral Compressed Sensing , 2015, ArXiv.

[17]  Benjamin Recht,et al.  The alternating descent conditional gradient method for sparse inverse problems , 2015, CAMSAP.

[18]  Lihua Xie,et al.  Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.