Hybrid strategy for reducing transport cost in spatially embedded networks

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[3]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[5]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[6]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[7]  Massimo Marchiori,et al.  Is the Boston subway a small-world network? , 2002 .

[8]  Yukio Hayashi A Review of Recent Studies of Geographical Scale-Free Networks , 2005 .

[9]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Soundar R. T. Kumara,et al.  Decentralised topology control algorithms for connectivity of distributed wireless sensor networks , 2007, Int. J. Sens. Networks.

[11]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[12]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[13]  H E Stanley,et al.  Towards design principles for optimal transport networks. , 2010, Physical review letters.

[14]  Z. Di,et al.  Scaling properties in spatial networks and their effects on topology and traffic dynamics , 2009, 0908.3968.

[15]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[16]  Z. Di,et al.  Exact solution for optimal navigation with total cost restriction , 2010, 1007.1281.

[17]  Wen-Xu Wang,et al.  Transportation dynamics on networks of mobile agents , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  L. D. Costa,et al.  Fast long-range connections in transportation networks , 2010, 1005.1843.

[19]  Renaud Lambiotte,et al.  Uncovering space-independent communities in spatial networks , 2010, Proceedings of the National Academy of Sciences.

[20]  S. Havlin,et al.  Dimension of spatially embedded networks , 2011 .

[21]  Mariano Sigman,et al.  A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks , 2011, Proceedings of the National Academy of Sciences.

[22]  Wei Li,et al.  Cascading Failures in Interdependent Lattice Networks: The Critical Role of the Length of Dependency Links , 2012, Physical review letters.