Odometers on Regular Languages

AbstractOdometers or "adding machines" are usually introduced in the context of positional numeration systems built on a strictly increasing sequence of integers. We generalize this notion to systems defined on an arbitrary infinite regular language. In this latter situation, if (A,<) is a totally ordered alphabet, then enumerating the words of a regular language L over A with respect to the induced genealogical ordering gives a one-to-one correspondence between ℕ and L. In this general setting the odometer is not defined on a set of sequences of digits but on a set of pairs of sequences where the first (resp. the second) component of the pair is an infinite word over A (resp. an infinite sequence of states of the minimal automaton of L). We study some properties of the odometer such as continuity, injectivity, surjectivity, minimality, .... We then study some particular cases: we show the equivalence of this new function with the classical odometer built upon a sequence of integers whenever the set of greedy representations of all the integers is a regular language; we also consider substitution numeration systems as well as the connection with β-numerations.

[1]  Nikita Sidorov,et al.  Ergodic properties of Erd\"os measure, the entropy of the goldenshift, and related problems , 1996 .

[2]  M. Hollander,et al.  Greedy Numeration Systems and Regularity , 1998, Theory of Computing Systems.

[3]  Michel Rigo,et al.  Abstract $\beta $-expansions and ultimately periodic representations , 2005 .

[4]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[5]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[6]  Christiane Frougny,et al.  On the Sequentiality of the Successor Function , 1997, Inf. Comput..

[7]  Michel Rigo,et al.  Numeration Systems on a Regular Language , 1999, Theory of Computing Systems.

[8]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[9]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[10]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[11]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[12]  Tomasz Downarowicz,et al.  Dynamiques associees a une echelle de numeration , 2002 .

[13]  A. Siegel,et al.  Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .

[14]  Nikita Sidorov,et al.  Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .

[15]  Michel Rigo,et al.  Additive Functions with Respect to Numeration Systems on Regular Languages , 2003 .

[16]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[17]  Sergey Bezuglyi,et al.  Topics in dynamics and ergodic theory , 2003 .

[18]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[19]  Aviezri S. Fraenkel,et al.  Systems of numeration , 1983, 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH).

[20]  Tomasz Downarowicz,et al.  Propriétés topologiques et combinatoires des échelles de numération , 2000 .

[21]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .

[22]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[23]  Jean Marie Dumont,et al.  Digital sum moments and substitutions , 1993 .

[24]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[25]  Boris Solomyak,et al.  On the spectral theory of adic transformations , 1992 .

[26]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[27]  Anatoly M. Vershik,et al.  Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .

[28]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .

[29]  Michel Rigo,et al.  Construction of regular languages and recognizability of polynomials , 1999, Discret. Math..

[30]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[31]  A. Vershik,et al.  A theorem on the Markov periodic approximation in ergodic theory , 1985 .

[32]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[33]  Anne Bertrand-Mathis,et al.  Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .

[34]  Christiane Frougny On-Line Odometers for Two-Sided Symbolic Dynamical Systems , 2002, Developments in Language Theory.

[35]  Timo Jolivet,et al.  Substitutions , 2002, Peach State.

[36]  Nathalie Loraud $\beta$-shift, systèmes de numération et automates , 1995 .

[37]  Michel Rigo,et al.  More on Generalized Automatic Sequences , 2002, J. Autom. Lang. Comb..

[38]  Michel Rigo,et al.  Real numbers having ultimately periodic representations in abstract numeration systems , 2002, Inf. Comput..

[39]  Boris Solomyak,et al.  Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .

[40]  A. N. Livshits A sufficient condition for weak mixing of substitutions and stationary adic transformations , 1988 .

[41]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[42]  O. Bratteli Inductive limits of finite dimensional C*-algebras , 1972 .

[43]  Michel Rigo,et al.  Numeration systems on a regular language: Arithmetic operations Recognizability and Formal power series , 1999, Theor. Comput. Sci..

[44]  Berndt Farwer,et al.  ω-automata , 2002 .

[45]  Robert F. Tichy,et al.  Odometers and systems of numeration , 1995 .

[46]  Véronique Bruyère,et al.  Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..

[47]  Gerhard Keller,et al.  Adding machines and wild attractors , 1997, Ergodic Theory and Dynamical Systems.

[48]  G. Rauzy,et al.  Sequences defined by iterated morphisms , 1990 .