Parameterized Picard-Vessiot extensions and Atiyah extensions

Abstract Generalizing Atiyah extensions, we introduce and study differential abelian tensor categories over differential rings. By a differential ring, we mean a commutative ring with an action of a Lie ring by derivations. In particular, these derivations act on a differential category. A differential Tannakian theory is developed. The main application is to the Galois theory of linear differential equations with parameters. Namely, we show the existence of a parameterized Picard–Vessiot extension and, therefore, the Galois correspondence for many differential fields with, possibly, non-differentially closed fields of constants, that is, fields of functions of parameters. Other applications include a substantially simplified test for a system of linear differential equations with parameters to be isomonodromic, which will appear in a separate paper. This application is based on differential categories developed in the present paper, and not just differential algebraic groups and their representations.

[1]  Elżbieta Sowa Picard-Vessiot extensions for real fields , 2010 .

[2]  A. Ovchinnikov,et al.  Zariski closures of reductive linear differential algebraic groups , 2010, 1005.0042.

[3]  W. Waterhouse,et al.  Introduction to Affine Group Schemes , 1979 .

[4]  J. B. S. D. Salas Tangent algebraic subvarieties of vector fields , 2004 .

[5]  H. Umemura Picard-Vessiot theory in general Galois theory , 2011 .

[6]  M. Singer,et al.  Projective isomonodromy and Galois groups , 2010, 1002.2005.

[7]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .

[8]  N. Jacobson,et al.  Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966, The Mathematical Gazette.

[9]  N. Markarian The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem , 2006, math/0610553.

[10]  Lucia Di Vizio,et al.  Parameterized generic Galois groups for q-difference equations, followed by the appendix "The Galois D-groupoid of a q-difference system" by Anne Granier , 2012 .

[11]  R. Moosa,et al.  Jet and prolongation spaces , 2010, Journal of the Institute of Mathematics of Jussieu.

[12]  Tannakian Categories, Linear Differential Algebraic Groups, and Parametrized Linear Differential Equations , 2007, math/0703422.

[13]  Michael F. Singer,et al.  Differential Galois theory of linear difference equations , 2008, 0801.1493.

[14]  Anand Pillay,et al.  Algebraic D-groups and differential Galois theory , 2004 .

[15]  Martin Ziegler,et al.  Jet spaces of varieties over differential and difference fields , 2003 .

[16]  C. Hardouin,et al.  On the Grothendieck conjecture on p-curvatures for q-difference equations , 2012, 1205.1692.

[17]  Michael Wibmer,et al.  Existence of $\partial$-parameterized Picard-Vessiot extensions over fields with algebraically closed constants , 2011, 1104.3514.

[18]  Michael F. Singer,et al.  Monodromy groups of parameterized linear differential equations with regular singularities , 2011, 1106.2664.

[19]  A. Grothendieck Technique de descente et théorèmes d'existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats , 1960 .

[20]  I. Kaplansky An introduction to differential algebra , 1957 .

[21]  Lucia Di Vizio,et al.  Galois theories of q-difference equations: comparison theorems , 2012, Confluentes Mathematici.

[22]  A. Granier A Galois $D$-groupoid for $q$-difference equations , 2011 .

[23]  Thomas Scanlon,et al.  Generalized Hasse–Schmidt varieties and their jet spaces , 2009, 0908.4230.

[24]  Differential Tannakian categories , 2008, 0807.2497.

[25]  Michael Wibmer A Chevalley theorem for difference equations , 2010, 1010.5066.

[26]  M. Kamensky Model theory and the Tannakian formalism , 2009, 0908.0604.

[27]  Tonny A. Springer Linear Algebraic Groups , 1981 .

[28]  H. Umemura Differential Galois theory of infinite dimension , 1996, Nagoya Mathematical Journal.

[29]  Quantum integrable systems and differential Galois theory , 1996, alg-geom/9607012.

[30]  Andy R. Magid,et al.  Lectures on differential Galois theory , 1994 .

[32]  Charlotte Hardouin,et al.  Courbures, groupes de Galois gnriques et D-groupode de Galois d'un systme aux q-diffrences , 2010 .

[33]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[34]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[35]  Michio Jimbo,et al.  Deformation of linear ordinary differential equations, II , 1980 .

[36]  Tobias Dyckerhoff,et al.  The inverse problem of differential Galois theory over the field R(z) , 2008, 0802.2897.

[37]  渋谷 泰隆 Linear differential equations in the complex domain : problems of analytic continuation , 1990 .

[38]  Amnon Besser,et al.  Heidelberg Lectures on Coleman Integration , 2012 .

[39]  A. Ovchinnikov,et al.  Extensions of differential representations of SL2 and tori , 2011, Journal of the Institute of Mathematics of Jussieu.

[40]  E. R. Kolchin,et al.  Algebraic Matric Groups and the Picard-Vessiot Theory of Homogeneous Linear Ordinary Differential Equations , 1948 .

[41]  M. Atiyah Complex analytic connections in fibre bundles , 1957 .

[42]  Charlotte Hardouin,et al.  Hypertranscendance des systèmes aux différences diagonaux , 2008, Compositio Mathematica.

[43]  Y. Ershov Multi-Valued Fields , 2001 .

[44]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[45]  Alexey Ovchinnikov,et al.  Isomonodromic differential equations and differential categories , 2012, 1202.0927.

[46]  Evelyne Hubert,et al.  Differential Algebra for Derivations with Nontrivial Commutation Rules , 2005 .

[47]  A. Grothendieck Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de Picard : théorèmes d'existence , 1962 .

[48]  P. Deligne Action du groupe des tresses sur une catégorie , 1997 .

[49]  Peter Landesman,et al.  Generalized differential Galois theory , 2007, 0707.3583.

[50]  Michael F. Singer,et al.  Unipotent differential algebraic groups as parameterized differential Galois groups , 2013, Journal of the Institute of Mathematics of Jussieu.

[51]  Charlotte Hardouin,et al.  Descent for differential Galois theory of difference equations: confluence and q-dependence , 2011, 1103.5067.

[52]  P. Cassidy The differential rational representation algebra on a linear differential algebraic group , 1975 .

[53]  M. Kamensky Tannakian formalism over fields with operators , 2011, 1111.7285.

[54]  B. Lando Jacobi’s bound for the order of systems of first order differential equations , 1970 .

[55]  Nicolas Stalder Scalar Extension of Abelian and Tannakian Categories , 2008, 0806.0308.

[56]  Phyllis J. Cassidy,et al.  Differential algebraic groups , 1972 .

[57]  Tannakian Approach to Linear Differential Algebraic Groups , 2007, math/0702846.

[58]  P. Berthelot,et al.  Notes on Crystalline Cohomology. , 1978 .

[59]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[60]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[61]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[62]  A. V. Mikhalev,et al.  Differential and Difference Dimension Polynomials , 1998 .

[63]  A. Masuoka,et al.  Hopf Algebraic Approach to Picard-Vessiot Theory , 2009 .

[64]  Michael F Singer,et al.  Linear algebraic groups as parameterized Picard-Vessiot Galois groups , 2011, 1108.0406.

[65]  M. Singer,et al.  A Jordan–Hölder Theorem for differential algebraic groups , 2010, 1003.3274.

[66]  J. S. Milne,et al.  Erratum: Tannakian Categories , 1982 .

[67]  J. S. Milne,et al.  MOTIVES OVER FINITE FIELDS , 1994 .