Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED

Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of multiple superconducting resonators coupled to a superconducting transmon qutrit, that is, the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three resonators, resorting to quantum resonance operations, without any drive field. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times in theory. The numerical simulation shows that the fidelity of our c-phase gate is 99.57% within about 38.1 ns and that of our cc-phase gate is 99.25% within about 73.3 ns.

[1]  K. Koshino,et al.  Deterministic photon-photon (SWAP)^{1/2} gate using a lambda system , 2009, 0909.4762.

[2]  T. Palomaki,et al.  Demonstration of a single-photon router in the microwave regime. , 2011, Physical review letters.

[3]  Jay M. Gambetta,et al.  Improved superconducting qubit coherence using titanium nitride , 2013, 1303.4071.

[4]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[5]  Kyu-Hwang Yeon,et al.  Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system , 2013, 1306.4737.

[6]  Kurt Jacobs,et al.  Entangled State Synthesis for Superconducting Resonators , 2012 .

[7]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[10]  Chui-Ping Yang,et al.  Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit , 2011, 1106.3237.

[11]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[12]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[13]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[14]  Fu-Guo Deng,et al.  Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. , 2013, Optics express.

[15]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[16]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[17]  Fu-Guo Deng,et al.  Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities , 2013, 1310.0197.

[18]  Qing Ai,et al.  Theory of degenerate three-wave mixing using circuit QED in solid-state circuits , 2011 .

[19]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[20]  P. Bertet,et al.  Tunable Resonators for Quantum Circuits , 2007, 0712.0221.

[21]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[22]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[23]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[24]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[25]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[26]  Fu-Guo Deng,et al.  Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime , 2014, 1411.0274.

[27]  Frederick W. Strauch,et al.  Quantum logic gates for superconducting resonator qudits , 2011, 1108.2984.

[28]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[29]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[30]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[31]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[32]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[33]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[34]  Chui-Ping Yang,et al.  Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction , 2012, 1202.2084.

[35]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[36]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[37]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[38]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[39]  Barrington. Moore The Outlook , 1956 .

[40]  T. Duty,et al.  Tuning the field in a microwave resonator faster than the photon lifetime , 2008 .

[41]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[42]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[43]  Kurt Jacobs,et al.  Arbitrary control of entanglement between two superconducting resonators. , 2010, Physical review letters.

[44]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[45]  Fu-Guo Deng,et al.  Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics , 2014, 1403.0031.

[46]  A N Cleland,et al.  Measurement of the decay of Fock states in a superconducting quantum circuit. , 2008, Physical review letters.

[47]  Hong-Yi Dai,et al.  Scalable one-way quantum computer using on-chip resonator qubits , 2012 .

[48]  Yasunobu Nakamura,et al.  Deterministic photon-photon √ SWAP gate using a system , 2010 .

[49]  G. Long,et al.  Parallel Quantum Computing in a Single Ensemble Quantum Computer , 2003, quant-ph/0307055.

[50]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[51]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[52]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[53]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[54]  Fu-Guo Deng,et al.  Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. , 2014, Optics express.

[55]  G. Long,et al.  Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer , 2002, quant-ph/0207079.

[56]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[57]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[58]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[59]  M S Allman,et al.  rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. , 2010, Physical review letters.

[60]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[61]  Shi-Biao Zheng,et al.  Fast and simple scheme for generating NOON states of photons in circuit QED , 2013, Scientific Reports.

[62]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[63]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[64]  M. W. Johnson,et al.  Sign- and magnitude-tunable coupler for superconducting flux qubits , 2006, cond-mat/0608253.

[65]  A C Doherty,et al.  Circuit QED with a nonlinear resonator: ac-Stark shift and dephasing. , 2010, Physical review letters.

[66]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[67]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[68]  Frank K. Wilhelm,et al.  Generation and detection of NOON states in superconducting circuits , 2010, 1006.1336.

[69]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[70]  Franco Nori,et al.  Dynamical Casimir effect in a superconducting coplanar waveguide. , 2009, Physical review letters.

[71]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[72]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[73]  Frederick W Strauch,et al.  All-resonant control of superconducting resonators. , 2012, Physical review letters.

[74]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[75]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[76]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[77]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.