Beyond Gisin’s Theorem and its Applications: Violation of Local Realism by Two-Party Einstein-Podolsky-Rosen Steering

We demonstrate here that for a given mixed multi-qubit state if there are at least two observers for whom mutual Einstein-Podolsky-Rosen steering is possible, i.e. each observer is able to steer the other qubits into two different pure states by spontaneous collapses due to von Neumann type measurements on his/her qubit, then nonexistence of local realistic models is fully equivalent to quantum entanglement (this is not so without this condition). This result leads to an enhanced version of Gisin’s theorem (originally: all pure entangled states violate local realism). Local realism is violated by all mixed states with the above steering property. The new class of states allows one e.g. to perform three party secret sharing with just pairs of entangled qubits, instead of three qubit entanglements (which are currently available with low fidelity). This significantly increases the feasibility of having high performance versions of such protocols. Finally, we discuss some possible applications.

[1]  S. Popescu,et al.  Nonlocality as an axiom , 1994 .

[2]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[3]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[4]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[5]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[6]  Matematik Necessary and Sufficient Condition , 2010 .

[7]  C. H. Oh,et al.  All entangled pure states violate a single Bell's inequality. , 2012, Physical review letters.

[8]  S. Wehner,et al.  If quantum mechanics were more non-local it would violate the uncertainty principle , 2010 .

[9]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[10]  Sibasish Ghosh,et al.  Hardy's nonlocality for entangled states of three particles , 1998 .

[11]  M. Żukowski,et al.  Bell's theorem for general N-qubit states. , 2001, Physical review letters.

[12]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[13]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[14]  Jing-Ling Chen,et al.  All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering , 2012, Scientific Reports.

[15]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[16]  ZEILINGERα,et al.  QUEST FOR GHZ STATES , 2013 .

[17]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[18]  Chunfeng Wu,et al.  Gisin's theorem for three qubits. , 2003, Physical review letters.

[19]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[20]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[23]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[24]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[25]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[26]  Adán Cabello,et al.  Proposal for revealing quantum nonlocality via local contextuality. , 2009, Physical review letters.

[27]  Rupert Ursin,et al.  Loophole-free Quantum Steering , 2011 .

[28]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[30]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[31]  Jose L. Cereceda Hardy's nonlocality for generalized n-particle GHZ states [rapid communication] , 2004 .

[32]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[33]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[34]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[35]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[36]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[37]  R. Srikanth,et al.  The quantum cryptographic switch , 2011, Quantum Information Processing.

[38]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[39]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[40]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[41]  R. Srikanth,et al.  Counterfactual quantum certificate authorization , 2014 .

[42]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[43]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[44]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[45]  Xiao-hua Wu,et al.  Hardy's nonlocality theorem for three spin-half particles , 1996 .

[46]  N. Gisin,et al.  General properties of nonsignaling theories , 2005, quant-ph/0508016.

[47]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[48]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .