Physical modeling and numerical computation of magnetostriction

Purpose – Magnetostrictive alloys are widely used in actuator and sensor applications. The purpose of this paper is to developed a realistic physical model and a numerical computational scheme for their precise computation.Design/methodology/approach – The main step in the physical modeling is the decomposition of the mechanical strain and the magnetic induction into a reversible and an irreversible part. For the efficient solution of the arising coupled nonlinear partial differential equations the authors apply the finite element method.Findings – It can be demonstrated, that the hysteresis operators can be fitted by appropriate measurements. Therewith, the developed physical model and numerical simulation scheme is applicable for the design of magnetostrictive actuators and sensors.Originality/value – The decomposition of the mechanical strain and the magnetic induction into a reversible and an irreversible part. The reversible part is described by the linear magnetostrictive constitutive equations, whe...

[1]  A. Belahcen,et al.  Vibrations of rotating electrical machines due to magnetomechanical coupling and magnetostriction , 2006, IEEE Transactions on Magnetics.

[2]  A. Dasgupta,et al.  A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures , 1997 .

[3]  J. Dean,et al.  Finite-element analysis on cantilever beams coated with magnetostrictive material , 2006, IEEE Transactions on Magnetics.

[4]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[5]  O. Bottauscio,et al.  Modeling the Dynamic Behavior of Magnetostrictive Actuators , 2010, IEEE Transactions on Magnetics.

[6]  K. Linnemann Magnetostriktive und piezoelektrische Materialien - Konstitutive Modellierung und Finite-Element-Formulierung , 2008 .

[7]  Horacio Sosa,et al.  A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials , 2004 .

[8]  Mauro Zucca,et al.  Realization of a new experimental setup for magnetostrictive actuators , 2011 .

[9]  Alison B. Flatau,et al.  Statistical Analysis of Terfenol-D Material Properties , 2006 .

[10]  G. Reyne,et al.  Nonlinear finite element modelling of giant magnetostriction , 1993 .

[11]  Hellmut Hofmann Das elektromagnetische Feld , 1974 .

[12]  Lieven Vandevelde,et al.  Magnetic forces and magnetostriction in electrical machines and transformer cores , 2003 .

[13]  Marilyn Wun-Fogle,et al.  Characterization of Terfenol-D for magnetostrictive transducers , 1990 .

[14]  Ronnie Belmans,et al.  Local magnetostriction forces for finite element analysis , 2000 .

[15]  Manfred Kaltenbacher,et al.  Numerical Simulation of Mechatronic Sensors and Actuators , 2004 .

[16]  G. Engdahl Handbook of Giant Magnetostrictive Materials , 1999 .