Design and In-Orbit Performance of the Suzaku Wide-Band All-Sky Monitor

The Suzaku Wide-band All-sky Monitor (WAM) consists of thick BGO anti-coincidence shields of the Hard X-ray Detectors (HXD). It views about half of the sky and has a geometrical area of 800 cm per side and an effective area of 400 cm, even at 1 MeV. Hence, the WAM can provide unique opportunities to detect high-energy emission from GRBs and solar flares in the sub-MeV to MeV range. The WAM has detected more than 400 GRBs and 100 solar flares since its launch. This paper describes the in-flight performance of the HXD/WAM during the initial two years of operations, including the in-flight energy response, spectral and timing capabilities, and in-orbit background.

[1]  Mathematics,et al.  Spectral Properties of Prompt Emission of Four Short Gamma-Ray Bursts Observed by the Suzaku-WAM and the Konus-Wind , 2008, 0801.2432.

[2]  Yoshitaka Ishisaki,et al.  In-Orbit Timing Calibration of the Hard X-Ray Detector on Board Suzaku , 2008 .

[3]  T. Sakamoto,et al.  The First Swift BAT Gamma-Ray Burst Catalog , 2007, 0707.4626.

[4]  Shunsaku Okada,et al.  The X-Ray Telescope onboard Suzaku , 2007 .

[5]  Ryuichi Fujimoto,et al.  The Suzaku High Resolution X-Ray Spectrometer , 2007 .

[6]  T. Tanaka,et al.  In-Orbit Performance of the Hard X-Ray Detector on Board Suzaku , 2006, astro-ph/0611233.

[7]  Sandeep K. Patel,et al.  The prelude to and aftermath of the giant flare of 2004 December 27: persistent and pulsed X-Ray properties of SGR 1806-20 from 1993 to 2005 , 2006, astro-ph/0602402.

[8]  Tadayuki Takahashi,et al.  In-orbit performance of the Suzaku wide-band all-sky monitor , 2006, SPIE Astronomical Telescopes + Instrumentation.

[9]  J. Kotoku,et al.  Development of the HXD-II wide-band all-sky monitor onboard Astro-E2 , 2005, IEEE Transactions on Nuclear Science.

[10]  J. Kotoku,et al.  Preflight calibration and performance of the astro-E2/HXD-II wide-band all-sky monitor , 2005, IEEE Transactions on Nuclear Science.

[11]  D. Yonetoku,et al.  Development of a Monte Carlo Simulator for the Astro-E2 hard X-ray detector (HXD-II) , 2005, IEEE Transactions on Nuclear Science.

[12]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[13]  M. Kippen,et al.  INTEGRAL spectrometer SPI’s GRB detection capabilities : GRBs detected inside SPI’s FoV and with the anticoincidence system ACS , 2003, astro-ph/0308346.

[14]  B. Dingus,et al.  A γ-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model , 2003, Nature.

[15]  B. A. Harmon,et al.  The Burst and Transient Source Experiment Earth Occultation Technique , 2001, astro-ph/0109069.

[16]  C. Kouveliotou,et al.  The Fourth BATSE Gamma-Ray Burst Catalog (Revised) , 1999, astro-ph/9903205.

[17]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[18]  Luciano Nicastro,et al.  In-flight performances of the BeppoSAX gamma-ray burst monitor , 1997, Optics & Photonics.

[19]  R. L. Aptekar,et al.  Konus-W gamma-ray burst experiment for the GGS Wind spacecraft , 1995 .

[20]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[21]  B. A. Harmon,et al.  Imaging high-energy astrophysical sources using Earth occultation , 1993, Nature.

[22]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[23]  C. Meegan,et al.  Identification of events observed by BATSE , 1993 .

[24]  A. Toor,et al.  The Crab nebula as a calibration source for X-ray astronomy. , 1974 .

[25]  Space Science Reviews , 1962, Nature.