A Unified Sequent Calculus for Focused Proofs
暂无分享,去创建一个
[1] Radha Jagadeesan,et al. Testing Concurrent Systems: An Interpretation of Intuitionistic Logic , 2005, FSTTCS.
[2] Dale Miller,et al. Focusing and Polarization in Intuitionistic Logic , 2007, CSL.
[3] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[4] Gerhard Gentzen,et al. Investigations into Logical Deduction , 1970 .
[5] Dale Miller,et al. Incorporating Tables into Proofs , 2007, CSL.
[6] Gopalan Nadathur,et al. Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..
[7] Jean-Yves Girard,et al. On the Unity of Logic , 1993, Ann. Pure Appl. Log..
[8] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[9] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[10] Olivier Laurent,et al. Étude de la polarisation en logique , 2001 .
[11] Olivier Laurent,et al. Polarized and focalized linear and classical proofs , 2005, Ann. Pure Appl. Log..
[12] Dale Miller,et al. Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.
[13] Hugo Herbelin. Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .
[14] Roy Dyckhoff,et al. LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.
[15] Hiroshi Nakano. A Constructive Logic Behind the Catch and Throw Mechanism , 1994, Ann. Pure Appl. Log..