A Unified Sequent Calculus for Focused Proofs

We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical logic, intuitionistic logic, and multiplicative-additive linear logic are derived as fragments of LKU by increasing the sensitivity of specialized structural rules to polarity information. We develop a unified, streamlined framework for proving cut-elimination in the various fragments. Furthermore, each sublogic can interact with other fragments through cut. We also consider the possibility of introducing classical-linear hybrid logics.

[1]  Radha Jagadeesan,et al.  Testing Concurrent Systems: An Interpretation of Intuitionistic Logic , 2005, FSTTCS.

[2]  Dale Miller,et al.  Focusing and Polarization in Intuitionistic Logic , 2007, CSL.

[3]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[4]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[5]  Dale Miller,et al.  Incorporating Tables into Proofs , 2007, CSL.

[6]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[7]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[8]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[9]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[10]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[11]  Olivier Laurent,et al.  Polarized and focalized linear and classical proofs , 2005, Ann. Pure Appl. Log..

[12]  Dale Miller,et al.  Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.

[13]  Hugo Herbelin Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .

[14]  Roy Dyckhoff,et al.  LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.

[15]  Hiroshi Nakano A Constructive Logic Behind the Catch and Throw Mechanism , 1994, Ann. Pure Appl. Log..