Relativistic coupled-cluster study of SrF for low-energy precision tests of fundamental physics

[1]  S. Pal,et al.  Molecular frame dipole moment of diatomic molecules within relativistic coupled‐cluster framework: A comparative study of expectation value versus energy derivative approach , 2020, International Journal of Quantum Chemistry.

[2]  S. Pal,et al.  Electronic structure parameter of nuclear magnetic quadrupole moment interaction in metal monofluorides. , 2020, The Journal of chemical physics.

[3]  S. Pal,et al.  Relativistic coupled-cluster study of BaF in search of CP violation , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[4]  Jógvan Magnus Haugaard Olsen,et al.  The DIRAC code for relativistic molecular calculations. , 2020, The Journal of chemical physics.

[5]  T. Giesen,et al.  Spectroscopy of short-lived radioactive molecules , 2019, Nature.

[6]  S. Pal,et al.  Relativistic coupled-cluster investigation of parity (P) and time-reversal (T ) symmetry violations in HgF. , 2018, The Journal of chemical physics.

[7]  C. Panda,et al.  Improved limit on the electric dipole moment of the electron , 2018, Nature.

[8]  Pi A. B. Haase,et al.  Measuring the electric dipole moment of the electron in BaF , 2018, The European Physical Journal D.

[9]  S. Pal,et al.  Electron–nucleus scalar–pseudoscalar interaction in PbF: Z-vector study in the relativistic coupled-cluster framework , 2017, 1706.09221.

[10]  S. Pal,et al.  Calculation of hyperfine structure constants of small molecules using Z-vector method in the relativistic coupled-cluster framework , 2016, Journal of Chemical Sciences.

[11]  K. Dyall,et al.  Electron correlation within the relativistic no-pair approximation. , 2016, The Journal of chemical physics.

[12]  S. Pal,et al.  Search for parity and time reversal violating effects in HgH: Relativistic coupled-cluster study. , 2015, The Journal of chemical physics.

[13]  S. Pal,et al.  Calculation of P,T-odd interaction constant of PbF using Z-vector method in the relativistic coupled-cluster framework. , 2015, The Journal of chemical physics.

[14]  Sreekanth Chirayath Mathavan,et al.  Traveling-wave deceleration of SrF molecules , 2014, 1402.2800.

[15]  P. W. Hess,et al.  Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron , 2013, Science.

[16]  A. Titov,et al.  Communication: theoretical study of ThO for the electron electric dipole moment search. , 2013, The Journal of chemical physics.

[17]  U. van Kolck,et al.  Electric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and Beyond , 2013, 1303.2371.

[18]  E. Hinds,et al.  Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis , 2012, 1208.4507.

[19]  E. Hinds,et al.  Improved measurement of the shape of the electron , 2011, Nature.

[20]  J. Barry,et al.  Laser cooling of a diatomic molecule , 2010, Nature.

[21]  W. Schwarz An Introduction to Relativistic Quantum Chemistry , 2010 .

[22]  Daoling Peng,et al.  Exact two-component Hamiltonians revisited. , 2009, The Journal of chemical physics.

[23]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[24]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[25]  M. Pospelov,et al.  Electric dipole moments as probes of new physics , 2005, hep-ph/0504231.

[26]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg , 2004 .

[27]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[28]  M. Kozlov,et al.  Parity violation effects in diatomics , 1995 .

[29]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[30]  L. Hunter Tests of time-reversal invariance in atoms, molecules, and the neutron. , 1991, Science.

[31]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[32]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[33]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[34]  V. Fomichev,et al.  Calculation of the P- and T-odd spin-rotational Hamiltonian of the PbF molecule , 1987 .

[35]  W. Ernst,et al.  Electric dipole moment of SrF X 2Σ+ from high-precision stark effect measurements , 1985 .

[36]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[37]  W. Weltner Magnetic atoms and molecules , 1983 .

[38]  L. B. Knight,et al.  Hyperfine Interaction and Chemical Bonding in MgF, CaF, SrF, and BaF molecules , 1971 .

[39]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .