Full Energy Spectra of Interface State Densities for n‐ and p‐type MoS2 Field‐Effect Transistors

2D materials are promising to overcome the scaling limit of Si field‐effect transistors (FETs). However, the insulator/2D channel interface severely degrades the performance of 2D FETs, and the origin of the degradation remains largely unexplored. Here, the full energy spectra of the interface state densities (Dit) are presented for both n‐ and p‐ MoS2 FETs, based on the comprehensive and systematic studies, i.e., full rage of channel thickness and various gate stack structures with h‐BN as well as high‐k oxides. For n‐MoS2, Dit around the mid‐gap is drastically reduced to 5 × 1011 cm−2 eV−1 for the heterostructure FET with h‐BN from 5 × 1012 cm−2 eV−1 for the high‐k top‐gate. On the other hand, Dit remains high, ≈1013 cm−2 eV−1, even for the heterostructure FET for p‐MoS2. The systematic study elucidates that the strain induced externally through the substrate surface roughness and high‐k deposition process is the origin for the interface degradation on conduction band side, while sulfur‐vacancy‐induced defect states dominate the interface degradation on valance band side. The present understanding of the interface properties provides the key to further improving the performance of 2D FETs.

[1]  Kenji Watanabe,et al.  Pinpoint pick-up and bubble-free assembly of 2D materials using PDMS/PMMA polymers with lens shapes , 2019, Applied Physics Express.

[2]  N. Fang,et al.  Direct observation of electron capture and emission processes by the time domain charge pumping measurement of MoS2 FET , 2018, Applied Physics Letters.

[3]  N. Fang,et al.  Accumulation-Mode Two-Dimensional Field-Effect Transistor: Operation Mechanism and Thickness Scaling Rule. , 2018, ACS applied materials & interfaces.

[4]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[5]  C. Cheng,et al.  Two-dimensional electronic transport and surface electron accumulation in MoS2 , 2018, Nature Communications.

[6]  P. Hurley,et al.  Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis , 2018 .

[7]  W. Yu,et al.  Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors , 2018 .

[8]  A. Morpurgo,et al.  Hole Transport in Exfoliated Monolayer MoS2. , 2018, ACS nano.

[9]  N. Fang,et al.  Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor , 2018, 1801.10345.

[10]  Michael Neumann,et al.  Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy , 2017, Nature Communications.

[11]  K. Nagashio,et al.  Transport properties of the top and bottom surfaces in monolayer MoS2 grown by chemical vapor deposition. , 2017, Nanoscale.

[12]  J. Baldwin,et al.  Electronic Transport in Bilayer MoS2 Encapsulated in HfO2. , 2017, ACS applied materials & interfaces.

[13]  P. Hurley,et al.  Probing Interface Defects in Top-Gated MoS2 Transistors with Impedance Spectroscopy. , 2017, ACS applied materials & interfaces.

[14]  D. Chi,et al.  Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric , 2017, Scientific Reports.

[15]  N. Fang,et al.  Experimental detection of active defects in few layers MoS2 through random telegraphic signals analysis observed in its FET characteristics , 2016, 1612.07556.

[16]  Chong-Yun Park,et al.  Indirect Bandgap Puddles in Monolayer MoS2 by Substrate‐Induced Local Strain , 2016, Advanced materials.

[17]  K. Nagashio,et al.  Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition , 2016, 1610.09857.

[18]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[19]  J. Tominaga,et al.  Two-Dimensional Transition-Metal Dichalcogenides , 2016 .

[20]  L. Tapasztó,et al.  The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy , 2016, Scientific Reports.

[21]  T. Grasser,et al.  The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors , 2016 .

[22]  J. Appenzeller,et al.  Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model , 2015, Nature Communications.

[23]  Woong Choi,et al.  Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals. , 2016, ACS applied materials & interfaces.

[24]  K. Nagashio,et al.  Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system , 2015, 1511.07117.

[25]  J. Ho,et al.  Integration of High-k Oxide on MoS2 by Using Ozone Pretreatment for High-Performance MoS2 Top-Gated Transistor with Thickness-Dependent Carrier Scattering Investigation. , 2015, Small.

[26]  R. Moriya,et al.  Influence of the density of states of graphene on the transport properties of graphene/MoS2/metal vertical field-effect transistors , 2015, 1506.00877.

[27]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[28]  A. Krasheninnikov,et al.  Three-fold rotational defects in two-dimensional transition metal dichalcogenides , 2015, Nature Communications.

[29]  A. Ando,et al.  Fabrication of high-k/metal-gate MoS2 field-effect transistor by device isolation process utilizing Ar-plasma etching , 2015 .

[30]  P. Jeon,et al.  Trap density probing on top-gate MoS₂ nanosheet field-effect transistors by photo-excited charge collection spectroscopy. , 2015, Nanoscale.

[31]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[32]  D. Jena,et al.  Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors , 2015, 1503.03015.

[33]  Ning Wang,et al.  Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures , 2014, Nature Communications.

[34]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[35]  K. Nagashio,et al.  Subthreshold transport in mono- and multilayered MoS2 FETs , 2014 .

[36]  Lei Liao,et al.  Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors , 2014, Advanced materials.

[37]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[38]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[39]  F. Xia,et al.  Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition , 2014, Nature Communications.

[40]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[41]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[42]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[43]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[44]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[45]  L. Lauhon,et al.  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[46]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[47]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[48]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[49]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[50]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[51]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[52]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[53]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[54]  S. Takagi,et al.  Quantitative understanding of inversion-layer capacitance in Si MOSFET's , 1995 .

[55]  D. Fleetwood 'Border traps' in MOS devices , 1992 .

[56]  H. Haddara,et al.  Conductance technique in MOSFETs: Study of interface trap properties in the depletion and weak inversion regimes , 1988 .

[57]  P. Chow,et al.  A new AC technique for accurate determination of channel charge and mobility in very thin gate MOSFET's , 1986, IEEE Transactions on Electron Devices.

[58]  Takuo Sugano,et al.  Theory of continuously distributed trap states at Si‐SiO2 interfaces , 1981 .

[59]  Bruce E. Deal,et al.  Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers , 1981 .

[60]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[61]  Yoshio Nishi,et al.  Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I , 1971 .

[62]  C. N. Berglund Surface states at steam-grown silicon-silicon dioxide interfaces , 1966 .

[63]  F. Heiman,et al.  The effects of oxide traps on the MOS capacitance , 1965 .