Chaos controlling of extended nonlinear Liénard system based on the Melnikov theory

Abstract Chaos control may have a dual function, to generate chaos or to suppress it. By the Melnikov theory, two criterions of controlling chaos for a class of nonlinear Lienard system are established. According to the criterions, we implement chaos control using non-feedback method. Two illustrative examples, a Duffing–Rayleigh oscillator imposed with a weak bounded noise control, and a Duffing–van der Pol oscillator subject to a harmonic parametric control are presented here to illustrate the validity of the criterions. To better support the results obtained above, some indicators are used, namely the Lyapunov exponent, phase portrait, Poincare cross-section and time evolution. Both two methods lead to fully consistent results.

[1]  Steven R. Bishop,et al.  Symmetry-breaking in the response of the parametrically excited pendulum model , 2005 .

[2]  Marcelo A. Savi,et al.  Chaos control in a nonlinear pendulum using a semi-continuous method , 2004 .

[3]  Ping Bi,et al.  Bifurcation of limit cycles and separatrix loops in singular Lienard systems , 2004 .

[4]  Baisheng Wu,et al.  A new analytical approach to the Duffing-harmonic oscillator , 2003 .

[5]  Dora E. Musielak,et al.  Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom , 2005 .

[6]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[7]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[8]  Zhenkun Huang,et al.  Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation , 2001 .

[9]  I. Goldhirsch,et al.  Taming chaotic dynamics with weak periodic perturbations. , 1991, Physical review letters.

[10]  Clément Tchawoua,et al.  Strange attractors and chaos control in a Duffing–Van der Pol oscillator with two external periodic forces , 2004 .

[11]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[12]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  S. Narayanan,et al.  Chaos Control by Nonfeedback Methods in the Presence of Noise , 1999 .

[14]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[15]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[16]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[17]  L. Arnold Random Dynamical Systems , 2003 .

[18]  Colin Christopher,et al.  On the classification of Liénard systems with amplitude-independent periods , 2004 .

[19]  Jitsuro Sugie,et al.  Global asymptotic stability of nonautonomous systems of Liénard type , 2004 .

[20]  A. Maccari,et al.  Modulated motion and infinite-period homoclinic bifurcation for parametrically excited Liénard systems , 2000 .

[21]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.