Phylogenomics Revives Traditional Views on Deep Animal Relationships

[1]  M. Manuel Early evolution of symmetry and polarity in metazoan body plans. , 2009, Comptes rendus biologies.

[2]  B. Schierwater,et al.  Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis , 2009, PLoS biology.

[3]  David J. Miller,et al.  Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil , 2008, Current Biology.

[4]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[5]  D. Lavrov,et al.  Seventeen New Complete mtDNA Sequences Reveal Extensive Mitochondrial Genome Evolution within the Demospongiae , 2008, PloS one.

[6]  A. Collins,et al.  Phylogeny and evolution of glass sponges (porifera, hexactinellida). , 2008, Systematic biology.

[7]  H. Philippe,et al.  Improvement of molecular phylogenetic inference and the phylogeny of Bilateria , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[9]  C. Nielsen Six major steps in animal evolution: are we derived sponge larvae? , 2008, Evolution & development.

[10]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[11]  B. Degnan,et al.  Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning , 2007, PloS one.

[12]  B. Lang,et al.  Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans , 2007, Current Biology.

[13]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[14]  H. Philippe,et al.  SCaFoS: a tool for Selection, Concatenation and Fusion of Sequences for phylogenomics , 2007, BMC Evolutionary Biology.

[15]  Hervé Philippe,et al.  Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? , 2007, Molecular biology and evolution.

[16]  K. Peterson,et al.  Poriferan paraphyly and its implications for Precambrian palaeobiology , 2007 .

[17]  H. Philippe,et al.  Large-scale sequencing and the new animal phylogeny. , 2006, Trends in ecology & evolution.

[18]  M. Martindale,et al.  Molecular evidence for deep evolutionary roots of bilaterality in animal development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Hillis,et al.  Resolution of phylogenetic conflict in large data sets by increased taxon sampling. , 2006, Systematic biology.

[20]  V. Schmid,et al.  Mesodermal anatomies in cnidarian polyps and medusae. , 2006, The International journal of developmental biology.

[21]  S. Carroll,et al.  Animal Evolution and the Molecular Signature of Radiations Compressed in Time , 2005, Science.

[22]  M. Martindale The evolution of metazoan axial properties , 2005, Nature Reviews Genetics.

[23]  A. Ereskovsky,et al.  Larval development in the Homoscleromorpha (Porifera, Demospongiae) , 2005 .

[24]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[25]  M. Manuel,et al.  Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. , 2004, Molecular phylogenetics and evolution.

[26]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[27]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[28]  Xavier Turon,et al.  Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions , 2003, Microscopy research and technique.

[29]  M. Manuel,et al.  Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. , 2003, Systematic biology.

[30]  Terry Gaasterland,et al.  The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Soest,et al.  Systema Porifera. A Guide to the Classification of Sponges , 2002 .

[32]  S. Pomponi,et al.  A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges , 2002, Naturwissenschaften.

[33]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[35]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[36]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[37]  Peter Ax,et al.  A new approach to the phylogenetic order in nature , 1996 .

[38]  N. Noro,et al.  Type IV collagen in sponges, the missing link in basement membrane ubiquity * , 1996, Biology of the cell.

[39]  G. Harbison On the classification and evolution of the Ctenophora , 1985 .

[40]  S. Morris The origins and relationships of lower invertebrates , 1983 .

[41]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[42]  N. B. Eales,et al.  Invertebrates , 2003 .

[43]  John Edward Gray,et al.  Notes on the arrangement of sponges, with the description of some new genera , 1867 .