On some classes of operator inclusions with lower semicontinuous nonlinearities

We consider a class of multimaps which are the composition of a superposition multioperator ${\mathcal P}_F$ generated by a nonconvex-valued almost lower semicontinuous nonlinearity $F$ and an abstract solution operator $S$. We prove that under some suitable conditions such multimaps are condensing with respect to a special vector-valued measure of noncompactness and construct a topological degree theory for this class of multimaps yielding some fixed point principles. It is shown how abstract results can be applied to semilinear inclusions, inclusions with $m$-accretive operators and time-dependent subdifferentials, nonlinear evolution inclusions and integral inclusions in Banach spaces.