Noise-shaping Quantization Methods for Frame-based and Compressive Sampling Systems

Noise shaping refers to an analog-to-digital conversion methodology in which quantization error is arranged to lie mostly outside the signal spectrum by means of oversampling and feedback. Recently it has been successfully applied to more general redundant linear sampling and reconstruction systems associated with frames as well as non-linear systems associated with compressive sampling. This chapter reviews some of the recent progress in this subject.

[1]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[2]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[3]  Ole Christensen,et al.  On Dual Gabor Frame Pairs Generated by Polynomials , 2010 .

[4]  Rayan Saab,et al.  Root-Exponential Accuracy for Coarse Quantization of Finite Frame Expansions , 2012, IEEE Transactions on Information Theory.

[5]  Rayan Saab,et al.  Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..

[6]  Vivek K Goyal Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .

[7]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[8]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[9]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[10]  Felix Krahmer,et al.  An RIP-Based Approach to $\Sigma \Delta $ Quantization for Compressed Sensing , 2014, IEEE Signal Processing Letters.

[11]  K. Dajani,et al.  From greedy to lazy expansions and their driving dynamics , 2002 .

[12]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[13]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[14]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[15]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[16]  Özgür Yilmaz,et al.  Alternative dual frames for digital-to-analog conversion in sigma–delta quantization , 2010, Adv. Comput. Math..

[17]  C. S. Güntürk One‐bit sigma‐delta quantization with exponential accuracy , 2003 .

[18]  Ronald A. DeVore,et al.  A/D conversion with imperfect quantizers , 2006, IEEE Transactions on Information Theory.

[19]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[20]  Rongrong Wang,et al.  Quantization of compressive samples with stable and robust recovery , 2015, ArXiv.

[21]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[22]  Evan Chou,et al.  Beta-Duals of Frames and Applications to Problems in Quantization , 2013 .

[23]  Rayan Saab,et al.  Sparse Recovery by Non-convex Optimization -- Instance Optimality , 2008, ArXiv.

[24]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[25]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[26]  Rayan Saab,et al.  Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing , 2013, ArXiv.

[27]  W. Parry On theβ-expansions of real numbers , 1960 .

[28]  Rongrong Wang,et al.  Near-Optimal Compression for Compressed Sensing , 2015, 2015 Data Compression Conference.

[29]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[30]  M. Rudelson,et al.  Hanson-Wright inequality and sub-gaussian concentration , 2013 .

[31]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[32]  Rachel Ward,et al.  Lower bounds for the error decay incurred by coarse quantization schemes , 2010, ArXiv.

[33]  Rayan Saab,et al.  Near-Optimal Encoding for Sigma-Delta Quantization of Finite Frame Expansions , 2013, ArXiv.

[34]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .

[35]  Felix Krahmer,et al.  An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.

[36]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[37]  Bernhard G. Bodmann,et al.  Smooth Frame-Path Termination for Higher Order Sigma-Delta Quantization , 2007 .

[38]  J. Benedetto,et al.  Second-order Sigma–Delta (ΣΔ) quantization of finite frame expansions , 2006 .

[39]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[40]  John J. Benedetto,et al.  Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.

[41]  C. Sinan Güntürk,et al.  Distributed Noise-Shaping Quantization: I. Beta Duals of Finite Frames and Near-Optimal Quantization of Random Measurements , 2014, ArXiv.

[42]  Özgür Yılmaz,et al.  Sobolev Duals in Frame Theory and Sigma-Delta Quantization , 2010 .

[43]  C. Sinan Güntürk,et al.  Distributed Noise-Shaping Quantization: II. Classical Frames , 2017 .

[44]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .