Novel triadius-like N4 specie of iron nitride compounds under high pressure

[1]  A. Dewaele,et al.  High Pressure and High Temperature Synthesis of the Iron Pernitride FeN2. , 2018, Inorganic chemistry.

[2]  Yanming Ma,et al.  Route to high-energy density polymeric nitrogen t-N via He−N compounds , 2018, Nature Communications.

[3]  Hongyan Wang,et al.  Prediction and characterization of the marcasite phase of iron pernitride under high pressure , 2017 .

[4]  Hanyu Liu,et al.  Exotic stable cesium polynitrides at high pressure , 2015, Scientific Reports.

[5]  G. Molnár,et al.  Homoleptic Iron(II) Complexes with the Ionogenic Ligand 6,6'-Bis(1H-tetrazol-5-yl)-2,2'-bipyridine: Spin Crossover Behavior in a Singular 2D Spin Crossover Coordination Polymer. , 2015, Inorganic chemistry.

[6]  Yanchao Wang,et al.  Metallic icosahedron phase of sodium at terapascal pressures. , 2015, Physical review letters.

[7]  Yanming Ma,et al.  Tellurium Hydrides at High Pressures: High-Temperature Superconductors. , 2015, Physical review letters.

[8]  Yanchao Wang,et al.  Stable xenon nitride at high pressures , 2015, 1501.03891.

[9]  D. Gall,et al.  Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides , 2014 .

[10]  Hai-Qing Lin,et al.  Polymerization of nitrogen in cesium azide under modest pressure. , 2014, The Journal of chemical physics.

[11]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[12]  Yanchao Wang,et al.  High-Pressure Phase Transitions and Structures of Topological Insulator BiTel , 2013 .

[13]  R. Hoffmann,et al.  Evolving Structural Diversity and Metallicity in Compressed Lithium Azide , 2013 .

[14]  Yanming Ma,et al.  Xenon Reacts with Iron at the Conditions of the Earth's Core , 2013, 1309.2169.

[15]  Yanming Ma,et al.  Exploring High-Pressure Lithium Beryllium Hydrides: A New Chemical Perspective , 2013 .

[16]  Fuxiang Zhang,et al.  Pressure-induced series of phase transitions in sodium azide , 2013 .

[17]  M. Chiang,et al.  Nitrate-to-nitrite-to-nitric oxide conversion modulated by nitrate-containing {Fe(NO)2}9 dinitrosyl iron complex (DNIC). , 2013, Inorganic chemistry.

[18]  H. Kroto,et al.  Polyoxopalladates encapsulating 8-coordinated metal ions, [MO8Pd(II)12L8]n- (M = Sc3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Lu3+; L = PhAsO3(2-), PhPO3(2-), SeO3(2-)). , 2012, Inorganic chemistry.

[19]  Hui Wang,et al.  Predicted lithium-boron compounds under high pressure. , 2012, Journal of the American Chemical Society.

[20]  X. Zeng,et al.  Polymorphic phases of sp3-hybridized carbon under cold compression. , 2012, Journal of the American Chemical Society.

[21]  T. Yagi,et al.  High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure , 2012 .

[22]  Hui Wang,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[23]  D. Subedi,et al.  The structure and reactivity of iron nitride complexes. , 2012, Dalton transactions.

[24]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[25]  S. Sinogeikin,et al.  Cold melting and solid structures of dense lithium , 2011 .

[26]  R. Dronskowski,et al.  A new phase in the binary iron nitrogen system?--The prediction of iron pernitride, FeN2. , 2011, Chemistry.

[27]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[28]  G. Papaefthymiou,et al.  Stable eight-coordinate iron(III/II) complexes. , 2010, Inorganic chemistry.

[29]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  M. Eremets,et al.  Phase stability of lithium azide at pressures up to 60 GPa , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Yanming Ma,et al.  Ultra-incompressible phases of tungsten dinitride predicted from first principles , 2009 .

[32]  B. Donnadieu,et al.  A family of enneanuclear iron(II) single-molecule magnets. , 2008, Chemistry.

[33]  A. Wodtke,et al.  Observation of photochemical C-N bond cleavage in CH3N3: a new photochemical route to cyclic N3. , 2008, The journal of physical chemistry. A.

[34]  F. Lloret,et al.  A novel supramolecular assembly in an iron(III) compound exhibiting magnetic ordering at 70 K , 2004 .

[35]  A. Wodtke,et al.  Velocity Map Ion Imaging of Chlorine Azide Photolysis: Evidence for Photolytic Production of Cyclic-N3† , 2003 .

[36]  S. Matar Chemical bonding and magnetic trends within the iron–nitrogen system , 2002 .

[37]  Ashwani Vij,et al.  Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5-**. , 2002, Angewandte Chemie.

[38]  G. de Petris,et al.  Experimental Detection of Tetranitrogen , 2002, Science.

[39]  K. Christe,et al.  Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. , 2001, Journal of the American Chemical Society.

[40]  X. Bu,et al.  Syntheses, crystal structures and properties of new manganese(II) complexes with macrocyclic polyamine ligands bearing pyridyl donor pendants , 2000 .

[41]  X. Bu,et al.  Synthesis, characterization and crystal structures of the cobalt(II) and iron(II) complexes with an octadentate ligand, 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane (L), [ML]2+ , 2000 .

[42]  Jerry A. Boatz,et al.  N5 +: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. , 1999, Angewandte Chemie.

[43]  J. Boatz,et al.  N5 +: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. , 1999, Angewandte Chemie.

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  A. Diebold,et al.  Iron(II) Polyamine Chemistry: Variation of Spin State and Coordination Number in Solid State and Solution with Iron(II) Tris(2-pyridylmethyl)amine Complexes , 1998 .

[46]  A. Simon Superconductivity and Chemistry , 1997 .

[47]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  T. Klapötke,et al.  Covalent Inorganic Azides , 1995 .

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[51]  H. Fujimori,et al.  Crystal structure and magnetic properties of the compound FeN , 1993 .

[52]  M. Twigg,et al.  High temperature superconductors , 1987 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[55]  B. Matthias,et al.  Superconductivity and structural behavior of hexagonal MoN and related Mo compounds , 1974 .