Adaptive shrinkage of singular values

To recover a low-rank structure from a noisy matrix, truncated singular value decomposition has been extensively used and studied. Recent studies suggested that the signal can be better estimated by shrinking the singular values as well. We pursue this line of research and propose a new estimator offering a continuum of thresholding and shrinking functions. To avoid an unstable and costly cross-validation search, we propose new rules to select two thresholding and shrinking parameters from the data. In particular we propose a generalized Stein unbiased risk estimation criterion that does not require knowledge of the variance of the noise and that is computationally fast. A Monte Carlo simulation reveals that our estimator outperforms the tested methods in terms of mean squared error on both low-rank and general signal matrices across different signal-to-noise ratio regimes. In addition, it accurately estimates the rank of the signal when it is detectable.

[1]  Emmanuel J. Candès,et al.  Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators , 2012, IEEE Transactions on Signal Processing.

[2]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[3]  J. Mandel Partitioning of interaction in analysis of variance , 1969 .

[4]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[5]  Paul Tseng,et al.  Robust wavelet denoising , 2001, IEEE Trans. Signal Process..

[6]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[7]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[8]  Peter D. Hoff,et al.  Model Averaging and Dimension Selection for the Singular Value Decomposition , 2006, math/0609042.

[9]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[10]  Andrew B. Nobel,et al.  Reconstruction of a low-rank matrix in the presence of Gaussian noise , 2010, J. Multivar. Anal..

[11]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[12]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[13]  Patrick O. Perry,et al.  Bi-cross-validation of the SVD and the nonnegative matrix factorization , 2009, 0908.2062.

[14]  Peyman Milanfar,et al.  Global Image Denoising , 2014, IEEE Transactions on Image Processing.

[15]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[16]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[17]  P. Tseng,et al.  Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising , 2000 .

[18]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[19]  Kung-Sik Chan,et al.  Reduced rank regression via adaptive nuclear norm penalization. , 2012, Biometrika.

[20]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[21]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[22]  Raj Rao Nadakuditi,et al.  OptShrink: An Algorithm for Improved Low-Rank Signal Matrix Denoising by Optimal, Data-Driven Singular Value Shrinkage , 2013, IEEE Transactions on Information Theory.

[23]  Moe Z. Win,et al.  On the marginal distribution of the eigenvalues of wishart matrices , 2009, IEEE Transactions on Communications.

[24]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[25]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[26]  Hongkai Zhao,et al.  Robust principle component analysis based four-dimensional computed tomography , 2010 .

[27]  Michael Wolf,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011 .

[28]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[29]  Julie Josse,et al.  Selecting the number of components in principal component analysis using cross-validation approximations , 2012, Comput. Stat. Data Anal..

[30]  D. Donoho,et al.  Minimax risk of matrix denoising by singular value thresholding , 2013, 1304.2085.

[31]  Julie Josse,et al.  Regularised PCA to denoise and visualise data , 2013, Stat. Comput..

[32]  David L. Donoho,et al.  Optimal Shrinkage of Singular Values , 2014, IEEE Transactions on Information Theory.

[33]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[34]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[35]  Stéphane Gaïffas,et al.  Weighted algorithms for compressed sensing and matrix completion , 2011, ArXiv.

[36]  S. Sardy Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient , 2011, 1110.1012.

[37]  Tapani Raiko,et al.  Tkk Reports in Information and Computer Science Practical Approaches to Principal Component Analysis in the Presence of Missing Values Tkk Reports in Information and Computer Science Practical Approaches to Principal Component Analysis in the Presence of Missing Values , 2022 .

[38]  Peter David Hoff,et al.  Equivariant and Scale-Free Tucker Decomposition Models , 2013, 1312.6397.

[39]  Blockwise and coordinatewise thresholding to combine tests of different natures in modern ANOVA , 2013, 1302.6073.

[40]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[41]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[42]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[43]  Julie Josse,et al.  Handling missing values in exploratory multivariate data analysis methods , 2012 .

[44]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[46]  Yannick Mahe Regularized PCA to denoise and visualize data , 2017 .

[47]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.