Prediction of the Young's modulus of silicate glasses by topological constraint theory

[1]  A. R. Cooper,et al.  Strengthening of Glass Fibers: I, Cladding * , 1969 .

[2]  A. R. Cooper,et al.  Strengthening of Class Fibers: 11, Ion Exchange * , 1969 .

[3]  J. Mackenzie,et al.  Direct calculation of Young's moidulus of glass , 1973 .

[4]  J. Mackenzie,et al.  Calculation of bulk modulus, shear modulus and Poisson's ratio of glass , 1975 .

[5]  R. Eagan,et al.  Effect of composition on the mechanical properties of aluminosilicate and borosilicate glasses , 1978 .

[6]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[7]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and ASi(Ge) , 1981 .

[8]  Masayuki Yamane,et al.  Coordination number of aluminum ions in alkali-free alumino-silicate glasses , 1982 .

[9]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[10]  C. Ecolivet,et al.  Proprietes elastiques et indices de refraction de verres azotes , 1984 .

[11]  R. Doremus,et al.  Handbook of glass properties , 1986 .

[12]  J. Rocherullé,et al.  Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie's theory , 1989 .

[13]  I. Yasui,et al.  Material Design of Glasses Based on Database – INTERGLAD , 1993 .

[14]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[15]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[16]  S. Inaba,et al.  Equation for estimating the Young's modulus, shear modulus and Vickers hardness of aluminosilicate glasses , 2000 .

[17]  S. Inaba,et al.  Equation for Estimating the Thermal Diffusivity, Specific Heat and Thermal Conductivity of Oxide Glasses , 2001 .

[18]  S. Inaba,et al.  Compositional Dependence of Mechanical Properties in Aluminosilicate, Borate and Phosphate Glasses , 2002 .

[19]  L. Hwa,et al.  Elastic moduli of low-silica calcium alumino-silicate glasses , 2003 .

[20]  J. Tossell,et al.  O triclusters revisited: classical MD and quantum cluster results for glasses of composition (Al(2)O(3))2(SiO(2)). , 2005, The journal of physical chemistry. B.

[21]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[22]  T. Rouxel Elastic properties of glasses: a multiscale approach , 2006 .

[23]  Tanguy Rouxel,et al.  Elastic Properties and Short-to Medium-Range Order in Glasses , 2007 .

[24]  M. Menziani,et al.  Insight into Elastic Properties of Binary Alkali Silicate Glasses; Prediction and Interpretation through Atomistic Simulation Techniques , 2007 .

[25]  T. Rouxel Designing Glasses to Meet Specific Mechanical Properties , 2008 .

[26]  J. Mauro,et al.  Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. , 2009, The Journal of chemical physics.

[27]  M. Tomozawa,et al.  A glass with high crack initiation load: Role of fictive temperature-independent mechanical properties , 2009 .

[28]  J. Mauro,et al.  Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids. , 2009, The Journal of chemical physics.

[29]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[30]  John C. Mauro,et al.  Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory , 2010 .

[31]  M. Smedskjaer,et al.  Prediction of glass hardness using temperature-dependent constraint theory. , 2010, Physical review letters.

[32]  Jürgen Horbach,et al.  Towards Ultrastrong Glasses , 2011, Advanced materials.

[33]  M. Micoulaut,et al.  Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids , 2011 .

[34]  Methods of Prediction of Glass Properties from Chemical Compositions , 2011 .

[35]  Topological Constraints and Rigidity of Network Glasses from Molecular Dynamics Simulations , 2012, 1506.06483.

[36]  N. Jakse,et al.  Structural and dynamic properties of calcium aluminosilicate melts: a molecular dynamics study. , 2013, The Journal of chemical physics.

[37]  M. Bauchy,et al.  Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. , 2014, The Journal of chemical physics.

[38]  Morten Mattrup Smedskjær,et al.  Topological Model for Boroaluminosilicate Glass Hardness , 2014 .

[39]  M. Bauchy,et al.  Nanoscale Structure of Cement: Viewpoint of Rigidity Theory , 2014 .

[40]  J. Mauro Grand Challenges in Glass Science , 2014, Front. Mater..

[41]  N. Jakse,et al.  Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers. , 2014, The Journal of chemical physics.

[42]  John C. Mauro,et al.  Glass Science in the United States: Current Status and Future Directions , 2014 .

[43]  John C. Mauro,et al.  Two Centuries of Glass Research: Historical Trends, Current Status, and Grand Challenges for the Future , 2014 .

[44]  J. Zwanziger,et al.  Topological constraints and the Makishima-Mackenzie model , 2015 .

[45]  M. Bauchy,et al.  Rigidity transition in materials: hardness is driven by weak atomic constraints. , 2015, Physical review letters.

[46]  R. Brow,et al.  Using the two-point bend technique to determine failure stress of pristine glass fibers , 2015 .

[47]  M. Bauchy,et al.  Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition , 2015, Front. Mater..

[48]  M. Bauchy,et al.  Fracture Toughness of Silicate Glasses: Insights from Molecular Dynamics Simulations , 2015, 1506.06441.

[49]  John C. Mauro,et al.  Accelerating the Design of Functional Glasses through Modeling: Plenary Talk , 2016 .

[50]  C. Weigel,et al.  Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing cations , 2016 .

[51]  J. Mauro,et al.  Density of topological constraints as a metric for predicting glass hardness , 2017 .

[52]  G. Sant,et al.  Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments. , 2017, The Journal of chemical physics.

[53]  H. Fujiwara,et al.  Optimization of amorphous semiconductors and low-/high-k dielectrics through percolation and topological constraint theory , 2017 .

[54]  John C. Mauro,et al.  Decoding the glass genome , 2017 .

[55]  W. Lanford,et al.  Narrowing of the Boolchand intermediate phase window for amorphous hydrogenated silicon carbide , 2018, Journal of Non-Crystalline Solids.

[56]  W. Lanford,et al.  Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials , 2018 .

[57]  W. Lanford,et al.  Microstructure-mechanical properties correlation in irradiated amorphous SiOC , 2018 .

[58]  Mathieu Bauchy,et al.  Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: A review , 2019, Computational Materials Science.

[59]  G. Sant,et al.  Effects of polydispersity and disorder on the mechanical properties of hydrated silicate gels , 2019, Journal of the Mechanics and Physics of Solids.