Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability

Abstract The possibility of estimating fundamental parameters common in single-moment ice microphysics schemes using radar observations is investigated for a model-simulated supercell storm by examining parameter sensitivity and identifiability. These parameters include the intercept parameters for rain, snow, and hail/graupel, and the bulk densities of snow and hail/graupel. These parameters are closely involved in the definition of drop/particle size distributions of microphysical species but often assume highly uncertain specified values. The sensitivity of model forecast within data assimilation cycles to the parameter values, and the issue of solution uniqueness of the estimation problem, are examined. The ensemble square root filter (EnSRF) is employed for model state estimation. Sensitivity experiments show that the errors in the microphysical parameters have a larger impact on model microphysical fields than on wind fields; radar reflectivity observations are therefore preferred over those of radi...

[1]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[2]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[3]  V. Chandrasekar,et al.  Multiparameter radar and in situ aircraft observation of graupel and hail , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  Mingjing Tong,et al.  An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis and Forecasting , 2006 .

[5]  G. Chavent Identification of Distributed Parameter Systems: About the Output Least Square Method, its Implementation, and Identifiability , 1979 .

[6]  D. Mitchell Evolution of Snow-Size Spectra in Cyclonic Storms. Part II: Deviations from the Exponential Form , 1991 .

[7]  S. Nakagiri,et al.  Identifiability of Spatially-Varying and Constant Parameters in Distributed Systems of Parabolic Type , 1977 .

[8]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[9]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[10]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[11]  Roscoe R. Braham Snow Particle Size Spectra in Lake Effect Snows. , 1990 .

[12]  D. Parsons,et al.  Size Distributions of Precipitation Particles in Frontal Clouds. , 1979 .

[13]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[14]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[15]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[16]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[17]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[18]  J. Marshall,et al.  THE DISTRIBUTION WITH SIZE OF AGGREGATE SNOWFLAKES , 1958 .

[19]  Kenneth S. Gage,et al.  Drop-Size Distribution Characteristics in Tropical Mesoscale Convective Systems , 2000 .

[20]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[21]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[22]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[23]  S. Yakowitz,et al.  Instability in aquifer identification: Theory and case studies , 1980 .

[24]  Erik N. Rasmussen,et al.  Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme , 2004 .

[25]  N. A. Crook Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields , 1996 .

[26]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[27]  Evolution of Snow-Size Spectra in Cyclonic Storms. Part I: Snow Growth by Vapor Deposition and Aggregation , 1988 .

[28]  K. K. Lo,et al.  The Growth of Snow in Winter Storms:. An Airborne Observational Study , 1982 .

[29]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[30]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[31]  A. Waldvogel,et al.  Raindrop Size Distribution and Sampling Size Errors , 1969 .

[32]  William R. Cotton,et al.  The Impact of Hail Size on Simulated Supercell Storms , 2004 .

[33]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[34]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .

[35]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[36]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[37]  J. Gamache,et al.  Diagnosis of Cloud Mass and Heat Fluxes from Radar and Synoptic Data , 1980 .

[38]  E. Mansell,et al.  A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories , 2005 .

[39]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[40]  Richard E. Passarelli,et al.  Theoretical and Observational Study of Snow-Size Spectra and Snowflake Aggregation Efficiencies , 1978 .

[41]  A. Waldvogel,et al.  The N0 Jump of Raindrop Spectra , 1974 .

[42]  Roy Rasmussen,et al.  A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer , 2007 .

[43]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[44]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results , 2007 .

[45]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[46]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[47]  Robert A. Black,et al.  Observations of Particle Size and Phase in Tropical Cyclones: Implications for Mesoscale Modeling of Microphysical Processes , 2004 .

[48]  D. Short,et al.  Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds , 1996 .

[49]  Nolan J. Doesken,et al.  Density of Freshly Fallen Snow in the Central Rocky Mountains , 2000 .

[50]  Chris Snyder,et al.  A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation , 2005 .

[51]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[52]  M. Murakami,et al.  Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud , 1990 .

[53]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling: 2. Identifiability and experimental design , 1990 .

[54]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[55]  Mingjing Tong Ensemble Kalman filter assimilation of Doppler radar data for the initialization and prediction of convective storms. , 2006 .

[56]  Jean-Pierre Pinty,et al.  A comprehensive two‐moment warm microphysical bulk scheme. I: Description and tests , 2000 .

[57]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[58]  Joanne Simpson,et al.  Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection , 1991 .

[59]  H. D. Orville,et al.  Radar Reflectivity Factor Calculations in Numerical Cloud Models Using Bulk Parameterization of Precipitation , 1975 .

[60]  Stephen J. Lord Observing System Simulation Experiments for NPOESS , 2001 .

[61]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[62]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[63]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[64]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[65]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .