Post-translocational folding of secretory proteins in Gram-positive bacteria.

[1]  M. Hecker,et al.  Structure-Function Analysis of PrsA Reveals Roles for the Parvulin-like and Flanking N- and C-terminal Domains in Protein Folding and Secretion in Bacillus subtilis* , 2004, Journal of Biological Chemistry.

[2]  D. Karamata,et al.  Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation , 1992, Molecular and General Genetics MGG.

[3]  W. Goebel,et al.  Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme , 1991, Molecular and General Genetics MGG.

[4]  D. Karamata,et al.  The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis , 1989, Molecular and General Genetics MGG.

[5]  W. Liebl,et al.  Studies on lipase directed export of Escherichia coli β-lactamase in Staphylococcus carnosus , 1986, Molecular and General Genetics MGG.

[6]  D. Mckay,et al.  The Periplasmic Molecular Chaperone Protein SurA Binds a Peptide Motif That Is Characteristic of Integral Outer Membrane Proteins* , 2003, Journal of Biological Chemistry.

[7]  D. Agard,et al.  Interdependent folding of the N- and C-terminal domains defines the cooperative folding of alpha-lytic protease. , 2003, Biochemistry.

[8]  A. Driessen,et al.  The bacterial translocase: a dynamic protein channel complex , 2003, Cellular and Molecular Life Sciences CMLS.

[9]  I. Poquet,et al.  HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. , 2003, FEMS microbiology letters.

[10]  M. Hecker,et al.  The extracellular proteome of Bacillus subtilis under secretion stress conditions , 2003, Molecular microbiology.

[11]  L. Hederstedt,et al.  Bacillus subtilis ResA Is a Thiol-Disulfide Oxidoreductase involved in Cytochrome c Synthesis* , 2003, The Journal of Biological Chemistry.

[12]  C. Harwood,et al.  Production of Bacillus anthracis Protective Antigen Is Dependent on the Extracellular Chaperone, PrsA* , 2003, The Journal of Biological Chemistry.

[13]  Y. Yabuta,et al.  Folding Pathway Mediated by an Intramolecular Chaperone , 2003, The Journal of Biological Chemistry.

[14]  M. Sarvas,et al.  The extracytoplasmic folding factor PrsA is required for protein secretion only in the presence of the cell wall in Bacillus subtilis. , 2003, Microbiology.

[15]  M. Opas,et al.  Is all of the endoplasmic reticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling proteins , 2003, The Journal of cell biology.

[16]  H. Lilie,et al.  Interaction of trigger factor with the ribosome. , 2003, Journal of molecular biology.

[17]  Frank Sargent,et al.  The Tat protein translocation pathway and its role in microbial physiology. , 2003, Advances in microbial physiology.

[18]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[19]  P. Bryan Prodomains and protein folding catalysis. , 2002, Chemical reviews.

[20]  D. Mckay,et al.  Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. , 2002, Structure.

[21]  Jan Maarten van Dijl,et al.  A Novel Class of Heat and Secretion Stress-Responsive Genes Is Controlled by the Autoregulated CssRS Two-Component System of Bacillus subtilis , 2002, Journal of bacteriology.

[22]  P. Renault,et al.  The Peptidyl-Prolyl Isomerase Motif Is Lacking in PmpA, the PrsA-Like Protein Involved in the Secretion Machinery of Lactococcus lactis , 2002, Applied and Environmental Microbiology.

[23]  R. Ye,et al.  Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production , 2002, Applied and Environmental Microbiology.

[24]  S. Bron,et al.  Thiol-Disulfide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168* , 2002, The Journal of Biological Chemistry.

[25]  M. Hecker,et al.  Stabilization of cell wall proteins in Bacillus subtilis: A proteomic approach , 2002, Proteomics.

[26]  D. Dubnau,et al.  The bdbDC Operon of Bacillus subtilisEncodes Thiol-disulfide Oxidoreductases Required for Competence Development* , 2002, The Journal of Biological Chemistry.

[27]  L. Hederstedt,et al.  Mutations in the Thiol-Disulfide Oxidoreductases BdbC and BdbD Can Suppress Cytochrome c Deficiency of CcdA-Defective Bacillus subtilis Cells , 2002, Journal of bacteriology.

[28]  J. Michiels,et al.  The functions of Ca(2+) in bacteria: a role for EF-hand proteins? , 2002, Trends in microbiology.

[29]  C. Harwood,et al.  Optimization of the Cell Wall Microenvironment Allows Increased Production of Recombinant Bacillus anthracis Protective Antigen from B. subtilis , 2002, Applied and Environmental Microbiology.

[30]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[31]  S. Mazmanian,et al.  Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria , 2002 .

[32]  David L. Popham,et al.  Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules , 2002 .

[33]  M. Inouye,et al.  Folding Pathway Mediated by an Intramolecular Chaperone , 2001, The Journal of Biological Chemistry.

[34]  O. Kuipers,et al.  Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29 , 2001, Archives of Microbiology.

[35]  R. Russell,et al.  HtrA protease and processing of extracellular proteins of Streptococcus mutans. , 2001, FEMS microbiology letters.

[36]  S. Bron,et al.  A novel two‐component regulatory system in Bacillus subtilis for the survival of severe secretion stress , 2001, Molecular microbiology.

[37]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[38]  A. Peschel,et al.  Secretion of human growth hormone by the food-grade bacterium Staphylococcus carnosus requires a propeptide irrespective of the signal peptide used , 2001, Archives of Microbiology.

[39]  M. Sarvas,et al.  Quantitation of the Capacity of the Secretion Apparatus and Requirement for PrsA in Growth and Secretion of α-Amylase inBacillus subtilis , 2001, Journal of bacteriology.

[40]  C. Gross,et al.  The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity , 2001, The EMBO journal.

[41]  K. Devine,et al.  YkdA and YvtA, HtrA-Like Serine Proteases inBacillus subtilis, Engage in Negative Autoregulation and Reciprocal Cross-Regulation of ykdA and yvtAGene Expression , 2001, Journal of bacteriology.

[42]  T. Silhavy,et al.  Periplasmic stress and ECF sigma factors. , 2001, Annual review of microbiology.

[43]  Anne de Jong,et al.  Protein transport pathways in Bacillus subtilis: a genome-based road map , 2001 .

[44]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[45]  J. Beckwith,et al.  Roles of thiol-redox pathways in bacteria. , 2001, Annual review of microbiology.

[46]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[47]  F. Götz,et al.  Staphylococcal lipases: biochemical and molecular characterization. , 2000, Biochimie.

[48]  C. Harwood,et al.  D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. , 2000, The Journal of biological chemistry.

[49]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[50]  K. T. Holland,et al.  Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. , 2000, Microbiology.

[51]  L. Hederstedt,et al.  Genes required for cytochrome c synthesis inBacillus subtilis , 2000, Molecular microbiology.

[52]  K. Devine,et al.  Expression of ykdA, Encoding a Bacillus subtilis Homologue of HtrA, Is Heat Shock Inducible and Negatively Autoregulated , 2000, Journal of bacteriology.

[53]  A. Bolotin,et al.  HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing , 2000, Molecular microbiology.

[54]  P. Renault,et al.  Expression of the Staphylococcus hyicus Lipase inLactococcus lactis , 2000, Applied and Environmental Microbiology.

[55]  F. Stevens,et al.  Protein folding in the ER. , 1999, Seminars in cell & developmental biology.

[56]  R. Chambert,et al.  Anionic polymers of Bacillus subtilis cell wall modulate the folding rate of secreted proteins. , 1999, FEMS microbiology letters.

[57]  M. Marahiel,et al.  Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures , 1999, Journal of bacteriology.

[58]  S. Bron,et al.  Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[59]  S. Bron,et al.  Evaluation of Bottlenecks in the Late Stages of Protein Secretion in Bacillus subtilis , 1999, Applied and Environmental Microbiology.

[60]  S. Bron,et al.  Different Mechanisms for Thermal Inactivation of Bacillus subtilis Signal Peptidase Mutants* , 1999, The Journal of Biological Chemistry.

[61]  M. Ehrmann,et al.  A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein , 1999, Cell.

[62]  Victoria A. Feher,et al.  Two-Component Signal Transduction in Bacillus subtilis: How One Organism Sees Its World , 1999, Journal of bacteriology.

[63]  R. Chambert,et al.  Kinetics of the secretion of Bacillus subtilis levanase overproduced during the exponential phase of growth. , 1999, Microbiology.

[64]  J. Tommassen,et al.  Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor , 1999, Molecular and General Genetics MGG.

[65]  M. Sarvas,et al.  Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the lgt gene , 1999, Molecular microbiology.

[66]  S. Bron,et al.  The Role of Lipoprotein Processing by Signal Peptidase II in the Gram-positive Eubacterium Bacillus subtilis , 1999, The Journal of Biological Chemistry.

[67]  P. Varmanen,et al.  Molecular Characterization of a Stress-Inducible Gene from Lactobacillus helveticus , 1998 .

[68]  J. Hansen,et al.  Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168* , 1998, The Journal of Biological Chemistry.

[69]  D. Agard,et al.  Pro region C-terminus:protease active site interactions are critical in catalyzing the folding of alpha-lytic protease. , 1998, Biochemistry.

[70]  C. Harwood,et al.  Influence of a Cell-Wall-Associated Protease on Production of α-Amylase by Bacillus subtilis , 1998, Applied and Environmental Microbiology.

[71]  D. Dubnau,et al.  Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis , 1998, Molecular microbiology.

[72]  C. Harwood,et al.  The influence of protein folding on late stages of the secretion of α‐amylases from Bacillus subtilis , 1998, FEBS letters.

[73]  S. Ng,et al.  Enhanced Secretory Production of a Single-Chain Antibody Fragment from Bacillus subtilis by Coproduction of Molecular Chaperones , 1998, Journal of bacteriology.

[74]  J. Cronan,et al.  A Bacillus subtilis Gene Induced by Cold Shock Encodes a Membrane Phospholipid Desaturase , 1998, Journal of bacteriology.

[75]  Y. Le Loir,et al.  A Nine-Residue Synthetic Propeptide Enhances Secretion Efficiency of Heterologous Proteins inLactococcus lactis , 1998, Journal of bacteriology.

[76]  C. Harwood,et al.  Protein secretion in phosphate-limited cultures of Bacillus subtilis 168 , 1998, Applied Microbiology and Biotechnology.

[77]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[78]  R. Chambert,et al.  Characterization of the rate-limiting step of the secretion of Bacillus subtilis alpha-amylase overproduced during the exponential phase of growth. , 1997, Microbiology.

[79]  R. Freudl,et al.  Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria , 1997, Applied and environmental microbiology.

[80]  Koreaki Ito,et al.  Roles of Disulfide Bonds in Bacterial Alkaline Phosphatase* , 1997, The Journal of Biological Chemistry.

[81]  F. Götz,et al.  Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus , 1997, Molecular microbiology.

[82]  Y. Lee,et al.  Roles of the signal peptide and mature domains in the secretion and maturation of the neutral metalloprotease from Streptomyces cacaoi. , 1997, The Biochemical journal.

[83]  D. Karamata,et al.  The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. , 1996, Microbiology.

[84]  W. D. de Vos,et al.  Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in lactococcus lactis SK11 , 1996, Journal of bacteriology.

[85]  M. Yamasaki,et al.  Secretion of active subtilisin YaB by a simultaneous expression of separate pre-pro and pre-mature polypeptides in Bacillus subtilis. , 1996, Biochemical and biophysical research communications.

[86]  D. Karamata,et al.  A periplasm in Bacillus subtilis , 1995, Journal of bacteriology.

[87]  P. Bryan,et al.  The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'. , 1995, Structure.

[88]  S. Norioka,et al.  Molecular cloning, nucleotide sequence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus. , 1995, Journal of biochemistry.

[89]  M. Perego,et al.  Incorporation of D-Alanine into Lipoteichoic Acid and Wall Teichoic Acid in Bacillus subtilis , 1995, The Journal of Biological Chemistry.

[90]  R. Chambert,et al.  Bacillus subtilis levansucrase : the efficiency of the second stage of secretion is modulated by external effectors assisting folding , 1995 .

[91]  S. Udaka,et al.  Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis , 1995, Journal of bacteriology.

[92]  Guy Plunkett,et al.  A new family of peptidyl-prolyl isomerases. , 1995, TIBS -Trends in Biochemical Sciences. Regular ed.

[93]  J. Hacker,et al.  Confirmation of the existence of a third family among peptidyl‐prolyl cis/trans isomerases Amino acid sequence and recombinant production of parvulin , 1994, FEBS letters.

[94]  F. Götz,et al.  Evidence for importance of the Staphylococcus hyicus lipase pro-peptide in lipase secretion, stability and activity. , 1994, FEMS microbiology letters.

[95]  D. Karamata,et al.  The gene of the N‐acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis , 1994, Molecular microbiology.

[96]  H. Fritz,et al.  Production of the immunoglobulin variable domain REIv via a fusion protein synthesized and secreted by Staphylococcus carnosus. , 1994, Biological chemistry Hoppe-Seyler.

[97]  R. Chambert,et al.  The contribution of the cell wall to a transmembrane calcium gradient could play a key role in Bacillus subtilis protein secretion , 1993, Molecular microbiology.

[98]  R. Freudl,et al.  An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtllis , 1993 .

[99]  M. Inouye,et al.  Folding pathway mediated by an intramolecular chaperone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[100]  V. Eijsink,et al.  Introduction of disulfide bonds into Bacillus subtilis neutral protease. , 1993, Protein engineering.

[101]  D. McConnell,et al.  Activation of a bacterial lipase by its chaperone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. Sarvas,et al.  The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high‐level secretion , 1993, Molecular microbiology.

[103]  M. Sarvas,et al.  Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro‐sequences , 1993, Molecular microbiology.

[104]  S. Foster Molecular analysis of three major wall‐associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two‐domain ligand‐binding protein , 1993, Molecular microbiology.

[105]  P. Aguilar,et al.  Biosynthesis and Function of Membrane Lipids , 1993 .

[106]  C. Harwood,et al.  Cell Wall Structure, Synthesis, and Turnover , 1993 .

[107]  S. Ng,et al.  Efficient Production of a Functional Single-Chain Antidigoxin Antibody via an Engineered Bacillus subtilis Expression-Secretion System , 1993, Bio/Technology.

[108]  M. Sarvas,et al.  Secretion of the Escherichia coli outer membrane proteins OmpA and OmpF in Bacillus subtilis is blocked at an early intracellular step , 1992, Molecular microbiology.

[109]  S. Normark,et al.  In vivo processing of Staphylococcus aureus lipase , 1992, Journal of bacteriology.

[110]  G. Venemâ,et al.  Processing of the lactococcal extracellular serine proteinase , 1991, Applied and environmental microbiology.

[111]  M. Sarvas,et al.  A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export , 1991, Molecular microbiology.

[112]  M. Payne,et al.  Use of alkaline phosphatase fusions to study protein secretion in Bacillus subtilis , 1991, Journal of bacteriology.

[113]  R. Chambert,et al.  Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals , 1990, Molecular microbiology.

[114]  R. Chambert,et al.  Secretion of Bacillus subtilis levansucrase. Fe(III) could act as a cofactor in an efficient coupling of the folding and translocation processes. , 1990, The Biochemical journal.

[115]  W. D. de Vos,et al.  Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. , 1989, The Journal of biological chemistry.

[116]  R. Freedman Protein disulfide isomerase: Multiple roles in the modification of nascent secretory proteins , 1989, Cell.

[117]  S. Makino,et al.  Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis , 1989, Journal of bacteriology.

[118]  M. Zamai,et al.  Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease. , 1989, Protein engineering.

[119]  H. Mizuno,et al.  NH2-terminal processing of Bacillus subtilis alpha-amylase. , 1988, The Journal of biological chemistry.

[120]  M. Sarvas,et al.  Mutants of Bacillus subtilis defective in protein export. , 1988, Journal of general microbiology.

[121]  R. Chambert,et al.  Secretion mechanism of Bacillus subtilis levansucrase: characterization of the second step. , 1988, Journal of general microbiology.

[122]  C. Saunders,et al.  Secretion of human serum albumin from Bacillus subtilis , 1987, Journal of bacteriology.

[123]  R. Novick,et al.  Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[124]  E. Ito,et al.  Comparative studies of lipoteichoic acids from several Bacillus strains , 1986, Journal of bacteriology.

[125]  S. Power,et al.  Secretion and autoproteolytic maturation of subtilisin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[126]  T. Peters,et al.  The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. , 1982, The Journal of biological chemistry.

[127]  B. May,et al.  Evidence for extrusion of unfolded extracellular enzyme polypeptide chains through membranes of Bacillus amyloliquefaciens , 1975, Journal of bacteriology.

[128]  R. Doyle,et al.  Organization of teichoic acid in the cell wall of Bacillus subtilis , 1975, Journal of bacteriology.

[129]  D. Minnikin,et al.  Effect of pH on the Proportions of Polar Lipids, in Chemostat Cultures of Bacillus subtilis , 1974, Journal of bacteriology.

[130]  H. Rogers,et al.  Selective extraction of polymers from cell walls of gram-positive bacteria. , 1973, The Biochemical journal.

[131]  J. Baddiley,et al.  The function of teichoic acids in cation control in bacterial membranes. , 1973, The Biochemical journal.

[132]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[133]  The location of N-acetylgalactosamine in the walls of Bacillus subtilis 168. , 1972, The Biochemical journal.

[134]  D. Minnikin,et al.  Variation of polar lipid composition of Bacillus subtilis (Marburg) with different growth conditions , 1972, FEBS letters.

[135]  F. Young,et al.  Regulation of the Bacterial Cell Wall: Analysis of a Mutant of Bacillus subtilis Defective in Biosynthesis of Teichoic Acid , 1972, Journal of bacteriology.

[136]  D. Tempest,et al.  Effects of Environment on Bacterial Wall Content and Composition , 1972 .

[137]  N. Mendelson,et al.  Ultrastructure of a Temperature-Sensitive Rod− Mutant of Bacillus subtilis , 1970, Journal of bacteriology.