A vibrotactile approach to tactile rendering

While moving our fingertip over a fine surface we experience a sensation that gives us an idea of its properties. A satisfactory simulation of this feeling is still an unsolved problem. In this paper, we describe a rendering strategy based on vibrations that play an important role in the tactile exploration of fine surfaces. To produce appropriate excitation patterns we use an array of vibrating contactor pins. Similar to the colour model in computer graphics, we simulate arbitrary vibrations as a superposition of only two sinewaves. Each sinewave is intended for the excitation of a specific population of mechanoreceptors. We carried out first tests of our rendering strategy on Brownian surfaces of different fractal dimensions.

[1]  Ian R Summers,et al.  A broadband tactile array on the fingertip. , 2002, The Journal of the Acoustical Society of America.

[2]  Kenneth O. Johnson,et al.  The roles and functions of cutaneous mechanoreceptors , 2001, Current Opinion in Neurobiology.

[3]  S. Bolanowski,et al.  A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation, and temporal summation , 2002, Somatosensory & motor research.

[4]  L. Bernstein,et al.  Single-channel vibrotactile supplements to visual perception of intonation and stress. , 1989, The Journal of the Acoustical Society of America.

[5]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[6]  A. R. Rao,et al.  A Taxonomy for Texture Description and Identification , 1990, Springer Series in Perception Engineering.

[7]  S. Bolanowski,et al.  Four channels mediate the mechanical aspects of touch. , 1988, The Journal of the Acoustical Society of America.

[8]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[9]  Alan C. Brady,et al.  Results from a Tactile Array on the Fingertip , 2003 .

[10]  M. Hollins,et al.  Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. , 2001, Somatosensory & motor research.

[11]  M. Carter Computer graphics: Principles and practice , 1997 .

[12]  George A. Gescheider,et al.  Vibrotactile masking: Effects of oneand two-site stimulation , 1983, Perception & psychophysics.

[13]  Mubarak Shah,et al.  Shape from shading using linear approximation , 1994, Image Vis. Comput..

[14]  Kenneth O. Johnson,et al.  Tactile Functions of Mechanoreceptive Afferents Innervating the Hand , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[15]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[16]  S. J. Bolanowski,et al.  Some characteristics of tactile channels , 2004, Behavioural Brain Research.

[17]  Malte Schulze,et al.  Von computergraphischen zu haptischen Texturen: virtual reality für den Entwicklungsbereich Design-Styling in der Automobilindustrie , 2005 .

[18]  Chris C. Handley The analysis and reconstruction of repetitive textures , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[19]  Ales Krenek,et al.  Haptical rendering of rough surfaces using its fractal dimension “ , 2022 .

[20]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[21]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[22]  A. Fraioli,et al.  Sensation magnitude of vibrotactile stimuli , 1969 .

[23]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..

[24]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[25]  John Cohen The World of Touch , 1952, Nature.

[26]  John C Stevens,et al.  Tactile information transfer: a comparison of two stimulation sites. , 2005, The Journal of the Acoustical Society of America.

[27]  Dimitris N. Metaxas,et al.  Feel the "fabric": an audio-haptic interface , 2003, SCA '03.