Local Effective Hölder Exponent Estimation on the Wavelet Transform Maxima Tree

We present a robust method of estimating an effective Holder exponent locally at an arbitrary resolution. The method is motivated by the multiplicative cascade paradigm, and implemented on the hierarchy of singularities revealed with the wavelet transform modulus maxima tree. In addition, we illustrate the possibility of the direct estimation of the scaling spectrum of the effective Holder exponent, and we link it to the established partition functions based multifractal formalism. We motivate both the local and the global multifractal analysis by showing examples of computer generated and real life time series.

[1]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[2]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[3]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[4]  Jacques Lévy Véhel,et al.  Multifractal Analysis of Choquet Capacities , 1998 .

[5]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[6]  M. M. Novak,et al.  Fractals and Beyond: Complexities in the Sciences , 1998 .

[7]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[8]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[9]  Bacry,et al.  Oscillating singularities in locally self-similar functions. , 1995, Physical review letters.

[10]  Claude Tricot,et al.  Fractals in Engineering , 1997 .

[11]  Jacques Lévy Véhel Numerical Computation of the Large Deviation Multifractal Spectrum , 1996 .

[12]  Jacques Lévy Véhel,et al.  2-Microlocal Analysis and Application in Signal Processing , 1998 .

[13]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Zbigniew R. Struzik The Wavelet Transform in the Solution to the Inverse Fractal Problem , 1995 .

[15]  E. Bacry,et al.  Solving the Inverse Fractal Problem from Wavelet Analysis , 1994 .

[16]  Rudolf H. Riedi,et al.  Multifractal Properties of TCP Traffic: a Numerical Study , 1997 .

[17]  E. Bacry,et al.  Characterizing long-range correlations in DNA sequences from wavelet analysis. , 1995, Physical review letters.

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[20]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[21]  P. Cizeau,et al.  Volatility distribution in the S&P500 stock index , 1997, cond-mat/9708143.

[22]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[23]  J. L. Véhel,et al.  Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .

[24]  Z. R. Struzik Fractals under the microscope or reaching beyond the dimensional formalism of fractals with the wavelet transform , 1997 .

[25]  E. Bacry,et al.  BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES , 1993 .

[26]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[27]  Zbigniew R. Struzik Removing divergences in the negative moments of the multi-fractal partition function with the wavelet transformation , 1998 .