Cancer Biomarker Assessment Using Evolutionary Rough Multi-Objective Optimization Algorithm

A hybrid unsupervised learning algorithm, which is termed as Evolutionary Rough Multi-Objective Optimization (ERMOO) algorithm, is proposed in this chapter. It comprises a judicious integration of the principles of the rough sets theory with the archived multi-objective simulated annealing approach. While the concept of boundary approximations of rough sets in this implementation deals with the incompleteness in the dynamic classification method with the quality of classification coefficient as the classificatory competence measurement, it enables faster convergence of the Pareto-archived evolution strategy. It incorporates both the rough set-based dynamic archive classification method in this algorithm. A measure of the amount of domination between two solutions is incorporated in this chapter to determine the acceptance probability of a new solution with an improvement in the spread of the nondominated solutions in the Pareto-front by adopting rough sets theory. The performance is demonstrated on real-life breast cancer dataset for identification of Cancer Associated Fibroblasts (CAFs) within the tumor stroma, and the identified biomarkers are reported. Moreover, biological significance tests are carried out for the obtained markers.

[1]  Balram Suman,et al.  Study of self-stopping PDMOSA and performance measure in multiobjective optimization , 2005, Comput. Chem. Eng..

[2]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[3]  Jonathan E. Fieldsend,et al.  Dominance measures for multi-objective simulated annealing , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[4]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Sanghamitra Bandyopadhyay,et al.  Analysis of Biological Data: A Soft Computing Approach , 2007, Science, Engineering, and Biology Informatics.

[7]  H. Othmer,et al.  Mathematical modeling of tumor-induced angiogenesis , 2004, Journal of mathematical biology.

[8]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[9]  Yen-Liang Chen,et al.  An overlapping cluster algorithm to provide non-exhaustive clustering , 2006, Eur. J. Oper. Res..

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[11]  P. Maini,et al.  A cellular automaton model for tumour growth in inhomogeneous environment. , 2003, Journal of theoretical biology.

[12]  Rajesh N. Dave,et al.  Use Of The Adaptive Fuzzy Clustering Algorithm To Detect Lines In Digital Images , 1990, Other Conferences.

[13]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[14]  Carlos A. Coello Coello,et al.  A new proposal for multi-objective optimization using differential evolution and rough sets theory , 2006, GECCO '06.

[15]  C. Borror Nonparametric Statistical Methods, 2nd, Ed. , 2001 .

[16]  Chenlei Leng,et al.  Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data , 2008, Comput. Biol. Chem..

[17]  Ujjwal Maulik,et al.  Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels , 2013, PloS one.

[18]  Sanghamitra Bandyopadhyay,et al.  GAPS: A clustering method using a new point symmetry-based distance measure , 2007, Pattern Recognit..

[19]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[20]  Jorge S. Reis-Filho,et al.  Microarray-Based Class Discovery for Molecular Classification of Breast Cancer: Analysis of Interobserver Agreement , 2011, Journal of the National Cancer Institute.

[21]  Srinivas Aluru,et al.  Space and time optimal parallel sequence alignments , 2004, IEEE Transactions on Parallel and Distributed Systems.

[22]  Ricardo Vilalta,et al.  Introduction to the Special Issue on Meta-Learning , 2004, Machine Learning.

[23]  Robert Clarke,et al.  Motif-guided sparse decomposition of gene expression data for regulatory module identification , 2011, BMC Bioinformatics.

[24]  Jonathan M. Garibaldi,et al.  ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization , 2009, BMC Bioinformatics.

[25]  Alexander Schliep,et al.  Clustering cancer gene expression data: a comparative study , 2008, BMC Bioinformatics.

[26]  Seo Young Kim,et al.  Effect of data normalization on fuzzy clustering of DNA microarray data , 2005, BMC Bioinformatics.

[27]  Astrid A. Prinz,et al.  Independent Component Analysis-motivated Approach to Classificatory Decomposition of Cortical Evoked Potentials , 2006, BMC Bioinformatics.

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  F. Azuaje,et al.  Multiple SVM-RFE for gene selection in cancer classification with expression data , 2005, IEEE Transactions on NanoBioscience.

[30]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[31]  Rainer Spang,et al.  Diagnostic signatures from microarrays: a bioinformatics concept for personalized medicine. , 2003, Drug discovery today.

[32]  L. V. van't Veer,et al.  Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  J. Barker,et al.  Large-scale temporal gene expression mapping of central nervous system development. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Nasim Akhtar,et al.  Angiogenesis assays: a critical overview. , 2003, Clinical chemistry.

[35]  Nicholas S. Flann,et al.  Multiobjective Optimization Based-Approach for Discovering Novel Cancer Therapies , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[36]  Ujjwal Maulik,et al.  Efficient parallel algorithm for pixel classification in remote sensing imagery , 2012, GeoInformatica.

[37]  Jan Komorowski,et al.  Learning Rule-based Models of Biological Process from Gene Expression Time Profiles Using Gene Ontology , 2003, Bioinform..

[38]  Ujjwal Maulik,et al.  Development of the human cancer microRNA network , 2010 .

[39]  P. Maini,et al.  MODELLING THE RESPONSE OF VASCULAR TUMOURS TO CHEMOTHERAPY: A MULTISCALE APPROACH , 2006 .

[40]  Pandian Vasant,et al.  Hybrid Optimization Techniques for Optimization in a Fuzzy Environment , 2013, Handbook of Optimization.

[41]  H. Moskowitz,et al.  Generalized dynamic programming for multicriteria optimization , 1990 .

[42]  Yonggang Wu,et al.  Attribute Reduction of Rough Set Based on Particle Swarm Optimization with Immunity , 2008, 2008 Second International Conference on Genetic and Evolutionary Computing.

[43]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[44]  Doulaye Dembélé,et al.  Fuzzy C-means Method for Clustering Microarray Data , 2003, Bioinform..

[45]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Sanghamitra Bandyopadhyay,et al.  A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[47]  R. Finley,et al.  New Directions in the Treatment of Cancer: Inhibition of Signal Transduction , 2002 .

[48]  Pandian Vasant,et al.  Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution , 2013, Trans. Comput. Sci..

[49]  Ujjwal Maulik,et al.  Spectral Clustering on Neighborhood Kernels with Modified Symmetry for Remote Homology Detection , 2011, 2011 Second International Conference on Emerging Applications of Information Technology.

[50]  Ying Xu,et al.  Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees , 2002, Bioinform..

[51]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[52]  Alexander Schliep,et al.  Ranking and selecting clustering algorithms using a meta-learning approach , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[53]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[54]  Brian E. Smith,et al.  An Efficient Parallel Implementation of the Hidden Markov Methods for Genomic Sequence-Search on a Massively Parallel System , 2008, IEEE Transactions on Parallel and Distributed Systems.

[55]  Xuefeng Bruce Ling,et al.  Multiclass cancer classification and biomarker discovery using GA-based algorithms , 2005, Bioinform..

[56]  David Horn,et al.  Novel Clustering Algorithm for Microarray Expression Data in A Truncated SVD Space , 2003, Bioinform..

[57]  Subha Madhavan,et al.  PUGSVM: a caBIGTM analytical tool for multiclass gene selection and predictive classification , 2011, Bioinform..

[58]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[60]  Yunhao Liu,et al.  Effectively Utilizing Global Cluster Memory for Large Data-Intensive Parallel Programs , 2006, IEEE Trans. Parallel Distributed Syst..

[61]  Ujjwal Maulik,et al.  Cancer Gene Expression Data Analysis Using Rough Based Symmetrical Clustering , 2013 .

[62]  Ujjwal Maulik,et al.  Parallel Point Symmetry Based Clustering for Gene Microarray Data , 2009, 2009 Seventh International Conference on Advances in Pattern Recognition.

[63]  Z. Agur,et al.  A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth , 2004, Angiogenesis.

[64]  Ujjwal Maulik,et al.  Evolutionary Rough Parallel Multi-Objective Optimization Algorithm , 2010, Fundam. Informaticae.

[65]  Yi Jiang,et al.  A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. , 2007, Biophysical journal.

[66]  Robert Clarke,et al.  Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells , 2011, Nature Reviews Cancer.

[67]  Anirban Mukherjee,et al.  Cancer Classification from Gene Expression Data by NPPC Ensemble , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[68]  Fernando Jiménez,et al.  A Multi-Objective Evolutionary Approach for Fuzzy Optimization in Production Planning , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[69]  Mahmoud A. Abo-Sinna,et al.  An algorithm for generating efficient solutions of multiobjective dynamic programming problems , 1995 .

[70]  Inderjit S. Dhillon,et al.  Diametrical clustering for identifying anti-correlated gene clusters , 2003, Bioinform..

[71]  Xing-Ming Zhao,et al.  A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics , 2014, BioMed research international.

[72]  Rainer Fuchs,et al.  Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters , 2001, Bioinform..

[73]  Chien-Hsing Chou,et al.  Short Papers , 2001 .

[74]  Constantin F. Aliferis,et al.  A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..

[75]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[76]  S. Bandyopadhyay,et al.  Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes , 2009, BMC Bioinformatics.

[77]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[79]  Arnold L. Rosenberg,et al.  Bounded-Collision Memory-Mapping Schemes for Data Structures with Applications to Parallel Memories , 2007, IEEE Transactions on Parallel and Distributed Systems.

[80]  Weiguo Liu,et al.  Parallel Pattern-Based Systems for Computational Biology: A Case Study , 2006, IEEE Transactions on Parallel and Distributed Systems.

[81]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[82]  Y. Ong,et al.  Feature Selection Using Single/Multi-Objective Memetic Frameworks , 2009 .

[83]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[84]  S. Bandyopadhyay,et al.  Nonparametric genetic clustering: comparison of validity indices , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[85]  Ron Shamir,et al.  CLICK and EXPANDER: a system for clustering and visualizing gene expression data , 2003, Bioinform..

[86]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[87]  William Stafford Noble,et al.  Kernel hierarchical gene clustering from microarray expression data , 2003, Bioinform..

[88]  Isak Gath,et al.  Detection and Separation of Ring-Shaped Clusters Using Fuzzy Clustering , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[90]  Yi Jiang,et al.  Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis , 2009, PLoS Comput. Biol..