Probabilistic decision graphs for optimization under uncertainty

[1]  Christophe Labreuche,et al.  Symbolic and Quantitative Approaches to Reasoning with Uncertainty , 2015, Lecture Notes in Computer Science.

[2]  Gregory F. Cooper,et al.  A Method for Using Belief Networks as Influence Diagrams , 2013, UAI 1988.

[3]  Thomas D. Nielsen,et al.  Probabilistic decision graphs for optimization under uncertainty , 2011, 4OR.

[4]  Changhe Yuan,et al.  Solving Multistage Influence Diagrams using Branch-and-Bound Search , 2010, UAI.

[5]  Ross D. Shachter,et al.  Dynamic programming in in uence diagrams with decision circuits , 2010, UAI.

[6]  Yijing Li,et al.  Solving Hybrid Influence Diagrams with Deterministic Variables , 2010, UAI.

[7]  Francisco Javier Díez,et al.  Variable elimination for influence diagrams with super value nodes , 2010, Int. J. Approx. Reason..

[8]  D. Koller,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[9]  Qiang Ji,et al.  Efficient non-myopic value-of-information computation for influence diagrams , 2008, Int. J. Approx. Reason..

[10]  Ya'akov Gal,et al.  Networks of Influence Diagrams: A Formalism for Representing Agents' Beliefs and Decision-Making Processes , 2008, J. Artif. Intell. Res..

[11]  Jayanta K. Ghosh,et al.  Bayesian Networks and Decision Graphs, 2nd Edition by Finn V. Jensen, Thomas D. Nielsen , 2008 .

[12]  Ross D. Shachter,et al.  Sensitivity analysis in decision circuits , 2008, UAI.

[13]  Ross D. Shachter,et al.  Evaluating influence diagrams with decision circuits , 2007, UAI.

[14]  Andrés Cano,et al.  A forward-backward Monte Carlo method for solving influence diagrams , 2006, Int. J. Approx. Reason..

[15]  Prakash P. Shenoy,et al.  Sequential influence diagrams: A unified asymmetry framework , 2006, Int. J. Approx. Reason..

[16]  Robert Leonard Theory of Games and Economic Behavior , 2006 .

[17]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[18]  Anders L. Madsen,et al.  Solving linear-quadratic conditional Gaussian influence diagrams , 2005, Int. J. Approx. Reason..

[19]  Prakash P. Shenoy,et al.  Decision making with hybrid influence diagrams using mixtures of truncated exponentials , 2004, Eur. J. Oper. Res..

[20]  Prakash P. Shenoy,et al.  Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation , 2004, Manag. Sci..

[21]  Ya'akov Gal,et al.  A language for modeling agents' decision making processes in games , 2003, AAMAS '03.

[22]  Thomas D. Nielsen,et al.  Sensitivity analysis in influence diagrams , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[23]  Finn Verner Jensen,et al.  Unconstrained Influence Diagrams , 2002, UAI.

[24]  Thomas D. Nielsen Decomposition of influence diagrams , 2001, J. Appl. Non Class. Logics.

[25]  Serafín Moral,et al.  Mixtures of Truncated Exponentials in Hybrid Bayesian Networks , 2001, ECSQARU.

[26]  Steffen L. Lauritzen,et al.  Representing and Solving Decision Problems with Limited Information , 2001, Manag. Sci..

[27]  Daphne Koller,et al.  Multi-Agent Influence Diagrams for Representing and Solving Games , 2001, IJCAI.

[28]  Anders L. Madsen,et al.  Solving Influence Diagrams using HUGIN, Shafer-Shenoy and Lazy Propagation , 2001, UAI.

[29]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.

[30]  Steffen L. Lauritzen,et al.  Evaluating Influence Diagrams using LIMIDs , 2000, UAI.

[31]  Rina Dechter,et al.  A New Perspective on Algorithms for Optimizing Policies under Uncertainty , 2000, AIPS.

[32]  Prakash P. Shenoy,et al.  Valuation network representation and solution of asymmetric decision problems , 2000, Eur. J. Oper. Res..

[33]  Ross D. Shachter Efficient Value of Information Computation , 1999, UAI.

[34]  Thomas D. Nielsen,et al.  Welldefined Decision Scenarios , 1999, UAI.

[35]  Anders L. Madsen,et al.  Lazy Evaluation of Symmetric Bayesian Decision Problems , 1999, UAI.

[36]  Nevin Lianwen Zhang,et al.  Probabilistic Inference in Influence Diagrams , 1998, Comput. Intell..

[37]  Michael C. Horsch,et al.  An Anytime Algorithm for Decision Making under Uncertainty , 1998, UAI.

[38]  Gordon B. Hazen,et al.  Sensitivity Analysis and the Expected Value of Perfect Information , 1998, Medical decision making : an international journal of the Society for Medical Decision Making.

[39]  Finn Verner Jensen,et al.  Myopic Value of Information in Influence Diagrams , 1997, UAI.

[40]  Frank Jensen,et al.  From Influence Diagrams to junction Trees , 1994, UAI.

[41]  Ross D. Shachter,et al.  Decision Making Using Probabilistic Inference Methods , 1992, UAI.

[42]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[43]  Edmund H. Durfee,et al.  A decision-theoretic approach to coordinating multiagent interactions , 1991, IJCAI 1991.

[44]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[45]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .

[46]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[47]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[48]  Changhe Yuan,et al.  Solving influence diagrams using heuristic search , 2010, ISAIM.

[49]  Prakash P. Shenoy,et al.  Mixtures of Polynomials in Hybrid B ayesian Networks with Deterministic Variables , 2009 .

[50]  Thomas D. Nielsen,et al.  A comparison of two approaches for solving unconstrained influence diagrams , 2009, Int. J. Approx. Reason..

[51]  Wilson S. Geisler,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS — PART A : SYSTEMS AND HUMANS , 2009 .

[52]  A. Madsen,et al.  New Methods for Marginalization in Lazy Propagation , 2008 .

[53]  Anders L. Madsen,et al.  Bayesian networks and influence diagrams , 2007 .

[54]  Marek J. Druzdzel,et al.  An Efficient Exhaustive Anytime Sampling Algorithm for Influence Diagrams , 2007 .

[55]  Barry R. Cobb Continuous Decision MTE Influence Diagrams , 2006, Probabilistic Graphical Models.

[56]  Kevin B. Korb,et al.  Bayesian Artificial Intelligence , 2004, Computer science and data analysis series.

[57]  Nevin Lianwen ZhangDepartment,et al.  Probabilistic Inference in In uence Diagrams , 2003 .

[58]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[59]  D. Nilsson Evaluating In uen e Diagrams using LIMIDs , 2000 .

[60]  Concha Bielza,et al.  Sensitivity Analysis in IctNeo , 2000 .

[61]  Rina Dechter,et al.  An Anytime Approximation For Optimizing Policies Under Uncertainty , 2000 .

[62]  Thomas D. Nielsen,et al.  Well-Defined Decision Scenarios , 1999 .

[63]  Finn Verner Jensen,et al.  Bayesian Networks and Influence Diagrams , 1997 .

[64]  Prakash P. Shenoy,et al.  Probability propagation , 1990, Annals of Mathematics and Artificial Intelligence.

[65]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[66]  K. Karplus,et al.  PROTEINS: Structure, Function, and Bioinformatics Suppl 7:135–142 (2005) SAM-T04: What Is New in Protein–Structure Prediction for , 2022 .