FINE-GRAINED EMOTION DETECTION IN MICROBLOG TEXT

Automatic emotion detection in text is concerned with using natural language processing techniques to recognize emotions expressed in written discourse. Endowing computers with the ability to recognize emotions in a particular kind of text, microblogs, has important applications in sentiment analysis and affective computing. In order to build computational models that can recognize the emotions represented in tweets we need to identify a set of suitable emotion categories. Prior work has mainly focused on building computational models for only a small set of six basic emotions (happiness, sadness, fear, anger, disgust, and surprise). This thesis describes a taxonomy of 28 emotion categories, an expansion of these six basic emotions, developed inductively from data. This set of 28 emotion categories represents a set of finegrained emotion categories that are representative of the range of emotions expressed in tweets, microblog posts on Twitter. The ability of humans to recognize these fine-grained emotion categories is characterized using inter-annotator reliability measures based on annotations provided by expert and novice annotators. A set of 15,553 human-annotated tweets form a gold standard corpus, EmoTweet-28. For each emotion category, we have extracted a set of linguistic cues (i.e., punctuation marks, emoticons, emojis, abbreviated forms, interjections, lemmas, hashtags and collocations) that can serve as salient indicators for that emotion category. We evaluated the performance of automatic classification techniques on the set of 28 emotion categories through a series of experiments using several classifier and feature combinations. Our results shows that it is feasible to extend machine learning classification to fine-grained emotion detection in tweets (i.e., as many as 28 emotion categories) with results that are comparable to state-of-the-art classifiers that detect six to eight basic emotions in text. Classifiers using features extracted from the linguistic cues associated with each category equal or better the performance of conventional corpus-based and lexicon-based features for finegrained emotion classification. This thesis makes an important theoretical contribution in the development of a taxonomy of emotion in text. In addition, this research also makes several practical contributions, particularly in the creation of language resources (i.e., corpus and lexicon) and machine learning models for fine-grained emotion detection in text. FINE-GRAINED EMOTION DETECTION IN MICROBLOG TEXT

[1]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[2]  Giuseppe Di Fabbrizio,et al.  EMOTION DETECTION IN EMAIL CUSTOMER CARE , 2013, Comput. Intell..

[3]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[4]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[5]  François-Régis Chaumartin,et al.  UPAR7: A knowledge-based system for headline sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[6]  Zoltán Kövecses,et al.  Language And Emotion Concepts , 1999 .

[7]  Cecilia Ovesdotter Alm,et al.  Emotions from Text: Machine Learning for Text-based Emotion Prediction , 2005, HLT.

[8]  David D. Lewis,et al.  An evaluation of phrasal and clustered representations on a text categorization task , 1992, SIGIR '92.

[9]  J. Russell A circumplex model of affect. , 1980 .

[10]  Franco Salvetti,et al.  Opinion Polarity Identification of Movie Reviews , 2006, Computing Attitude and Affect in Text.

[11]  Bashar Nuseibeh,et al.  A Hybrid Model for Automatic Emotion Recognition in Suicide Notes , 2012, Biomedical informatics insights.

[12]  Mitsuru Ishizuka,et al.  Emotion Sensitive News Agent: An Approach Towards User Centric Emotion Sensing from the News , 2007, Web Intelligence.

[13]  Saif Mohammad,et al.  From once upon a time to happily ever after: Tracking emotions in mail and books , 2012, Decis. Support Syst..

[14]  Helen Nissenbaum,et al.  Emotion and focus , 1985 .

[15]  P. Shaver,et al.  Emotion knowledge: further exploration of a prototype approach. , 1987, Journal of personality and social psychology.

[16]  William M. Pottenger,et al.  Classification of Emotions in Internet Chat: An Application of Machine Learning Using Speech Phonemes , 2003 .

[17]  Rafael A. Calvo,et al.  Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications , 2010, IEEE Transactions on Affective Computing.

[18]  Saif Mohammad,et al.  Using Nuances of Emotion to Identify Personality , 2013, Proceedings of the International AAAI Conference on Web and Social Media.

[19]  Andrés Montoyo,et al.  Detecting implicit expressions of emotion in text: A comparative analysis , 2012, Decis. Support Syst..

[20]  Alice H. Oh,et al.  Do You Feel What I Feel? Social Aspects of Emotions in Twitter Conversations , 2012, ICWSM.

[21]  Gregory Grefenstette,et al.  Coupling Niche Browsers and Affect Analysis for an Opinion Mining Application , 2004, RIAO.

[22]  A. Isen,et al.  Affect and Social Behavior. , 1991 .

[23]  Diana Inkpen,et al.  Using a Heterogeneous Dataset for Emotion Analysis in Text , 2011, Canadian Conference on AI.

[24]  Karrie Karahalios,et al.  TextTone: Expressing Emotion Through Text , 2005, INTERACT.

[25]  C. Izard The face of emotion , 1971 .

[26]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[27]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[28]  Jasy Suet Yan Liew,et al.  Socially-interactive dressing room: an iterative evaluation on interface design , 2011, CHI Extended Abstracts.

[29]  R. Bouckaert Bayesian belief networks : from construction to inference , 1995 .

[31]  Clifford Nass,et al.  Consistency of personality in interactive characters: verbal cues, non-verbal cues, and user characteristics , 2000, Int. J. Hum. Comput. Stud..

[32]  D. Watson,et al.  Development and validation of brief measures of positive and negative affect: the PANAS scales. , 1988, Journal of personality and social psychology.

[33]  Marco Grassi Developing HEO Human Emotions Ontology , 2009, COST 2101/2102 Conference.

[34]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[35]  A. Viera,et al.  Understanding interobserver agreement: the kappa statistic. , 2005, Family medicine.

[36]  Mitsuru Ishizuka,et al.  Analysis of affect expressed through the evolving language of online communication , 2007, IUI '07.

[37]  Diana Inkpen,et al.  Hierarchical Approach to Emotion Recognition and Classification in Texts , 2010, Canadian Conference on AI.

[38]  Son Doan,et al.  An analysis of Twitter messages in the 2011 Tohoku Earthquake , 2011, eHealth.

[39]  Frank Schweitzer,et al.  Emotions in Product Reviews--Empirics and Models , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[40]  Howard W. Beck,et al.  Clustering Lexical Patterns Obtained from a Text Corpus , 1998, FLAIRS.

[41]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[42]  Helmut Prendinger,et al.  A Linguistic Interpretation of the OCC Emotion Model for Affect Sensing from Text , 2009, Affective Information Processing.

[43]  Mitsuru Ishizuka,et al.  Textual Affect Sensing for Sociable and Expressive Online Communication , 2007, ACII.

[44]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[45]  Pero Subasic,et al.  Affect analysis of text using fuzzy semantic typing , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[46]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[47]  W. James Potter,et al.  Rethinking validity and reliability in content analysis , 1999 .

[48]  Hsinchun Chen,et al.  Affect Analysis of Web Forums and Blogs Using Correlation Ensembles , 2008, IEEE Transactions on Knowledge and Data Engineering.

[49]  Mitsuru Ishizuka,et al.  ASNA: An Intelligent Agent for Retrieving and Classifying News on the Basis of Emotion-Affinity , 2006, 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06).

[50]  Landra L. Rezabeck,et al.  Emoticons: Visual Cues for Computer-Mediated Communication. , 1995 .

[51]  Chen Huang,et al.  Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake , 2011, CSCW.

[52]  J. Russell,et al.  Evidence for a three-factor theory of emotions , 1977 .

[53]  Yvonne Neudorf Language Within Language Immediacy A Channel In Verbal Communication , 2016 .

[54]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[55]  A. Davies Language-independent Bayesian sentiment mining of Twitter , 2011 .

[56]  Hongyu Guo,et al.  An Empirical Study on the Effect of Negation Words on Sentiment , 2014, ACL.

[57]  P. White Appraisal Theory , 2015 .

[58]  Diego Reforgiato Recupero,et al.  Sentiment Analysis: Adjectives and Adverbs are Better than Adjectives Alone , 2007, ICWSM.

[59]  Shiv Naresh Shivhare,et al.  Emotion Detection from Text , 2012, ArXiv.

[60]  Maite Taboada,et al.  Methods for Creating Semantic Orientation Dictionaries , 2006, LREC.

[61]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[62]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[63]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[64]  Jean-Yves Antoine,et al.  Weighted Krippendorff’s alpha is a more reliable metrics for multi-coders ordinal annotations: experimental studies on emotion, opinion and coreference annotation , 2014, EACL.

[65]  M. Bradley,et al.  Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. , 1994, Journal of behavior therapy and experimental psychiatry.

[66]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[67]  P. Zachar,et al.  Categorical versus dimensional models of affect : a seminar on the theories of Panksepp and Russell , 2012 .

[68]  C. Elliott The affective reasoner: a process model of emotions in a multi-agent system , 1992 .

[69]  C. Nass,et al.  Emotion in human-computer interaction , 2002 .

[70]  Jonathon Read,et al.  Recognising Affect in Text using Pointwise-Mutual Information , 2004 .

[71]  Elke A. Rundensteiner,et al.  EMOTEX: Detecting Emotions in Twitter Messages , 2014 .

[72]  Christopher M. Danforth,et al.  Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents , 2010, ArXiv.

[73]  G. Clore,et al.  The Influence of Affect on Attitude , 2005 .

[74]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[75]  Foster Provost,et al.  Machine Learning from Imbalanced Data Sets 101 , 2008 .

[76]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[77]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[78]  Kaitlyn Mulcrone Detecting Emotion in Text , 2012 .

[79]  Mitsuru Ishizuka,et al.  SentiFul: A Lexicon for Sentiment Analysis , 2011, IEEE Transactions on Affective Computing.

[80]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[81]  Saif Mohammad,et al.  From Once Upon a Time to Happily Ever After: Tracking Emotions in Novels and Fairy Tales , 2011, LaTeCH@ACL.

[82]  Laura A. Granka,et al.  Let Me Count the Ways , 2005 .

[83]  Andrés Montoyo,et al.  EmotiNet: A Knowledge Base for Emotion Detection in Text Built on the Appraisal Theories , 2011, NLDB.

[84]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[85]  Mitsuru Ishizuka,et al.  A cognitively based approach to affect sensing from text , 2006, IUI '06.

[86]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[87]  Joel D. Martin,et al.  Semantic Role Labeling of Emotions in Tweets , 2014, WASSA@ACL.

[88]  Diana Inkpen,et al.  Natural Language Processing for Social Media , 2015, Natural Language Processing for Social Media.

[89]  Mitsuru Ishizuka,et al.  Rules of Emotions: A Linguistic Interpretation of an Emotion Model for Affect Sensing from Texts , 2007, ACII.

[90]  J. Stainer,et al.  The Emotions , 1922, Nature.

[91]  Hao Chen,et al.  Micro-blog social moods and Chinese stock market: the influence of emotional valence and arousal on Shanghai Composite Index volume , 2015, Int. J. Embed. Syst..

[92]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[93]  Jasy Suet Yan Liew,et al.  The intellectual characteristics of the information field: Heritage and substance , 2013, J. Assoc. Inf. Sci. Technol..

[94]  Kevin Crowston,et al.  Optimizing Features in Active Machine Learning for Complex Qualitative Content Analysis , 2014, LTCSS@ACL.

[95]  Stan Szpakowicz,et al.  Using Roget’s Thesaurus for Fine-grained Emotion Recognition , 2008, IJCNLP.

[96]  Alexandra Balahur,et al.  Affect Detection from Social Contexts Using Commonsense Knowledge Representations , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[97]  Kevin Crowston,et al.  Semi-Automatic Content Analysis of Qualitative Data , 2014 .

[98]  Sunghwan Mac Kim,et al.  EMOTIONS IN TEXT: DIMENSIONAL AND CATEGORICAL MODELS , 2013, Comput. Intell..

[99]  Claire Cardie,et al.  OpinionFinder: A System for Subjectivity Analysis , 2005, HLT.

[100]  Yiqun Liu,et al.  Emotion Tokens: Bridging the Gap among Multilingual Twitter Sentiment Analysis , 2011, AIRS.

[101]  P. Ekman,et al.  What the face reveals : basic and applied studies of spontaneous expression using the facial action coding system (FACS) , 2005 .

[102]  P. Ekman,et al.  Constants across cultures in the face and emotion. , 1971, Journal of personality and social psychology.

[103]  Mohammad S. Sorower A Literature Survey on Algorithms for Multi-label Learning , 2010 .

[104]  M. Banaji,et al.  Words high and low in pleasantness as rated by male and female college students , 1986 .

[105]  Claudiu Cristian Musat,et al.  Fine-Grained Emotion Recognition in Olympic Tweets Based on Human Computation , 2013, WASSA@NAACL-HLT.

[106]  Fredrik Olsson,et al.  Usefulness of Sentiment Analysis , 2012, ECIR.

[107]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[108]  Marco Guerini,et al.  Depeche Mood: a Lexicon for Emotion Analysis from Crowd Annotated News , 2014, ACL.

[109]  R. Plutchik Emotion, a psychoevolutionary synthesis , 1980 .

[110]  Taylor Jackson Scott,et al.  Statistical affect detection in collaborative chat , 2013, CSCW.

[111]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[112]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[113]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[114]  K. Bretonnel Cohen,et al.  Sentiment Analysis of Suicide Notes: A Shared Task , 2012, Biomedical informatics insights.

[115]  Rebecca J. Passonneau,et al.  Measuring Agreement on Set-valued Items (MASI) for Semantic and Pragmatic Annotation , 2006, LREC.

[116]  J. Fleiss,et al.  The measurement of interrater agreement , 2004 .

[117]  Ming Zhou,et al.  Building Large-Scale Twitter-Specific Sentiment Lexicon : A Representation Learning Approach , 2014, COLING.

[118]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[119]  S. Russ Affect and Creativity: the Role of Affect and Play in the Creative Process , 1993 .

[120]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[121]  Eric Horvitz,et al.  Predicting postpartum changes in emotion and behavior via social media , 2013, CHI.

[122]  Karen Gasper,et al.  Affective feelings as feedback: Some cognitive consequences. , 2001 .

[123]  J. Russell,et al.  Concept of Emotion Viewed From a Prototype Perspective , 1984 .

[124]  Azadeh Nikfarjam,et al.  A Hybrid System for Emotion Extraction from Suicide Notes , 2012, Biomedical informatics insights.

[125]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[126]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.

[127]  Ping Zhang,et al.  The Affective Response Model: A Theoretical Framework of Affective Concepts and Their Relationships in the ICT Context , 2013, MIS Q..

[128]  N. Hoffart Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory , 2000 .

[129]  C. Izard Innate and universal facial expressions: evidence from developmental and cross-cultural research. , 1994, Psychological bulletin.

[130]  Yuan-Fang Wang,et al.  The use of bigrams to enhance text categorization , 2002, Inf. Process. Manag..

[131]  Finn Årup Nielsen,et al.  A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs , 2011, #MSM.

[132]  Hille Pajupuu,et al.  Lexicon-based detection of emotion in different types of texts: Preliminary remarks , 2012 .

[133]  Vaibhavi N Patodkar,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2016 .

[134]  Michel Laroche,et al.  How Do Expressed Emotions Affect the Helpfulness of a Product Review? Evidence from Reviews Using Latent Semantic Analysis , 2015, Int. J. Electron. Commer..

[135]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[136]  Mitsuru Ishizuka,et al.  Narrowing the Social Gap among People Involved in Global Dialog: Automatic Emotion Detection in Blog Posts , 2007, ICWSM.

[137]  Ze-Jing Chuang,et al.  Multi-Modal Emotion Recognition from Speech and Text , 2004, ROCLING/IJCLCLP.

[138]  Kevin Crowston,et al.  Design of an Active Learning System with Human Correction for Content Analysis , 2014 .

[139]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[140]  P. Ekman,et al.  DIFFERENCES Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion , 2004 .

[141]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[142]  Randolph R. Cornelius,et al.  The science of emotion: Research and tradition in the psychology of emotion. , 1997 .

[143]  Wolfgang Teubert,et al.  Units of Meaning, Parallel Corpora, and their Implications for Language Teaching , 2004 .

[144]  Manabu Torii,et al.  A Hybrid Approach to Sentiment Sentence Classification in Suicide Notes , 2012, Biomedical informatics insights.

[145]  Michael Mohler,et al.  Semantic Signatures for Example-Based Linguistic Metaphor Detection , 2013 .

[146]  Daniele Quercia,et al.  Tracking "gross community happiness" from tweets , 2012, CSCW.

[147]  Fazilah Haron,et al.  CDES: A pixel-based crowd density estimation system for Masjid al-Haram , 2011, Safety Science.

[148]  Pasquale Lops,et al.  A General Architecture for an Emotion-aware Content-based Recommender System , 2015, EMPIRE@RecSys.

[149]  N. Besnier Language and Affect , 1990 .

[150]  R. Plutchik The emotions: Facts, theories and a new model. , 1964 .

[151]  J. Sim,et al.  The kappa statistic in reliability studies: use, interpretation, and sample size requirements. , 2005, Physical therapy.

[152]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[153]  C. Izard The Many Meanings/Aspects of Emotion: Definitions, Functions, Activation, and Regulation , 2010 .

[154]  P. Ekman An argument for basic emotions , 1992 .

[155]  Cindy K. Chung,et al.  The development and psychometric properties of LIWC2007 , 2007 .

[156]  Andrew Ortony,et al.  The Semantics of the Affective Lexicon , 1988 .

[157]  Jasy Liew Suet Yan Discovering Emotions in the Wild: An Inductive Method to Identify Fine-grained Emotion Categories in Tweets. , 2015, FLAIRS 2015.

[158]  Susan R. Fussell The Verbal Communication of Emotions : Interdisciplinary Perspectives , 2002 .

[159]  Taylor Jackson Scott,et al.  Adapting grounded theory to construct a taxonomy of affect in collaborative online chat , 2012, SIGDOC '12.

[160]  Alistair Kennedy,et al.  SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS , 2006, Comput. Intell..

[161]  J. Russell,et al.  A Description of the Affective Quality Attributed to Environments , 1980 .

[162]  Jerome Kagan,et al.  On Emotion and Its Development: A Working Paper , 1978 .

[163]  Saif Mohammad,et al.  Tracking Sentiment in Mail: How Genders Differ on Emotional Axes , 2011, WASSA@ACL.

[164]  Peter D. Turney,et al.  Crowdsourcing the Creation of a Word – Emotion Association Lexicon , 2010 .

[165]  Kimberly A. Neuendorf,et al.  The Content Analysis Guidebook , 2001 .

[166]  G. Mishne Experiments with Mood Classification in , 2005 .

[167]  Hugo Liu,et al.  ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .

[168]  W. G. Parrott,et al.  Emotions in social psychology : essential readings , 2001 .

[169]  Anthony C. Boucouvalas,et al.  Text-to-Emotion Engine for Real Time Internet Communication , 2002 .

[170]  Rebecca J. Passonneau Computing Reliability for Coreference Annotation , 2004, LREC.

[171]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[172]  Kalina Bontcheva,et al.  Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data , 2013, RANLP.

[173]  J. Russell 3. From a psychological constructionist perspective , 2012 .

[174]  J. Russell Core affect and the psychological construction of emotion. , 2003, Psychological review.

[175]  C. Darwin The Expression of the Emotions in Man and Animals , .

[176]  Diana Inkpen,et al.  A hierarchical approach to mood classification in blogs , 2011, Natural Language Engineering.

[177]  T. Dalgleish Basic Emotions , 2004 .

[178]  Alistair Kennedy,et al.  Getting Emotional About News , 2011, TAC.

[179]  R. Cowie Perceiving emotion: towards a realistic understanding of the task , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[180]  Jianhua Tao,et al.  Context based emotion detection from text input , 2004, INTERSPEECH.

[181]  John Platt,et al.  Fast training of svms using sequential minimal optimization , 1998 .

[182]  H. Prendinger,et al.  SenseNet : A Linguistic Tool to Visualize Numerical-Valance Based Sentiment of Textual Data , 2006 .

[183]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[184]  A. Ortony,et al.  What's basic about basic emotions? , 1990, Psychological review.

[185]  Jasy Suet Yan Liew,et al.  Expanding the Range of Automatic Emotion Detection in Microblogging Text , 2014, EACL.

[186]  K. Scherer Studying the emotion-antecedent appraisal process: An expert system approach , 1993 .

[187]  M. Kreutzer,et al.  DARWIN and FACIAL EXPRESSION A CENTURY OF RESEARCH IN REVIEW , 2014 .

[188]  P. Kleinginna,et al.  A categorized list of emotion definitions, with suggestions for a consensual definition , 1981 .

[189]  Matti Miestamo,et al.  Negation - An Overview of Typological Research , 2007, Lang. Linguistics Compass.

[190]  Mitsuru Ishizuka,et al.  Recognition of Affect Conveyed by Text Messaging in Online Communication , 2007, HCI.

[191]  Z. Kövecses,et al.  Metaphor and Emotion: Language, Culture, and Body in Human Feeling , 2000 .

[192]  Von-Wun Soo,et al.  Towards Text-based Emotion Detection A Survey and Possible Improvements , 2009, 2009 International Conference on Information Management and Engineering.

[193]  R. Lazarus Emotion and Adaptation , 1991 .

[194]  Jasy Suet Yan Liew,et al.  What is a tweet worth?: measuring the value of social media for an academic institution , 2012, iConference '12.

[195]  P. Johnson-Laird,et al.  Basic emotions, rationality, and folk theory , 1992 .

[196]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[197]  Simone Teufel,et al.  An annotation scheme for citation function , 2009, SIGDIAL Workshop.

[198]  Clement T. Yu,et al.  The effect of negation on sentiment analysis and retrieval effectiveness , 2009, CIKM.

[199]  Tyler Baldwin,et al.  Beyond Normalization: Pragmatics of Word Form in Text Messages , 2011, IJCNLP.

[200]  R. Plutchik Emotions : a general psychoevolutionary theory , 1984 .

[201]  Elke A. Rundensteiner,et al.  Using Hashtags as Labels for Supervised Learning of Emotions in Twitter Messages , 2014 .

[202]  Saif Mohammad,et al.  Using Hashtags to Capture Fine Emotion Categories from Tweets , 2015, Comput. Intell..

[203]  Jasy Suet Yan Liew,et al.  Conceptualizations of technology in the information field , 2013, ASIST.

[204]  Elizabeth D. Liddy,et al.  Discerning Emotions in Texts , 2004, AAAI 2004.

[205]  Nigel Collier,et al.  Twitter Emotion Analysis in Earthquake Situations , 2013, Int. J. Comput. Linguistics Appl..

[206]  Mitsuru Ishizuka,et al.  Affect Analysis Model: novel rule-based approach to affect sensing from text , 2010, Natural Language Engineering.

[207]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[208]  Li Zhang,et al.  Affect Sensing Using Linguistic, Semantic and Cognitive Cues in Multi-threaded Improvisational Dialogue , 2012, Cognitive Computation.

[209]  J. Carlin,et al.  Bias, prevalence and kappa. , 1993, Journal of clinical epidemiology.

[210]  Thomas Dixon “Emotion”: The History of a Keyword in Crisis , 2012, Emotion review : journal of the International Society for Research on Emotion.

[211]  Colin Cherry,et al.  Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes , 2012, Biomedical informatics insights.

[212]  N. Frijda Emotion, cognitive structure and action tendency , 1987 .

[213]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[214]  Henry Lieberman,et al.  A model of textual affect sensing using real-world knowledge , 2003, IUI '03.

[215]  John Short,et al.  The social psychology of telecommunications , 1976 .

[216]  Andrés Montoyo,et al.  Building and Exploiting EmotiNet, a Knowledge Base for Emotion Detection Based on the Appraisal Theory Model , 2012, IEEE Transactions on Affective Computing.

[217]  Howard R. Moskowitz,et al.  Emotion in Concepts , 2008 .

[218]  K. Scherer What are emotions? And how can they be measured? , 2005 .

[219]  Mitsuru Ishizuka,et al.  Emotion Estimation and Reasoning Based on Affective Textual Interaction , 2005, ACII.

[220]  Gilad Mishne,et al.  Capturing Global Mood Levels using Blog Posts , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[221]  Li Zhang Contextual and active learning-based affect-sensing from virtual drama improvisation , 2013, TSLP.

[222]  P. Ekman Universals and cultural differences in facial expressions of emotion. , 1972 .

[223]  J. Pennebaker,et al.  Psychological aspects of natural language. use: our words, our selves. , 2003, Annual review of psychology.

[224]  P. Young,et al.  Emotion and personality , 1963 .

[225]  J. Averill A CONSTRUCTIVIST VIEW OF EMOTION , 1980 .

[226]  Minsu Park,et al.  Depressive Moods of Users Portrayed in Twitter , 2012 .

[227]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[228]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[229]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[230]  Nancy Ide,et al.  Distant Supervision for Emotion Classification with Discrete Binary Values , 2013, CICLing.

[231]  J. Russell,et al.  An approach to environmental psychology , 1974 .

[232]  J. Turner Human Emotions: A Sociological Theory , 2007 .