Orthorhombic (Ru, Mn)2O3: a superior electrocatalyst for acidic oxygen evolution reaction

[1]  Jianhong Liu,et al.  Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction , 2022, Nature Communications.

[2]  Yan‐Bing He,et al.  RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance , 2022, Nature Communications.

[3]  Bo Zhang,et al.  Efficient and stable noble-metal-free catalyst for acidic water oxidation , 2022, Nature Communications.

[4]  Qing Chen,et al.  Bifunctional WC-Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media. , 2022, Angewandte Chemie.

[5]  Zhipan Liu,et al.  In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation , 2021, Nature Catalysis.

[6]  Min Gyu Kim,et al.  Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. , 2021, Angewandte Chemie.

[7]  Huisheng Peng,et al.  Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. , 2021, Journal of the American Chemical Society.

[8]  Min Gyu Kim,et al.  Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation , 2021, Nature Catalysis.

[9]  Qibo Zhang,et al.  Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media , 2020, Journal of Energy Chemistry.

[10]  Y. Jiao,et al.  Isolated Boron Sites for Electroreduction of Dinitrogen to Ammonia , 2020 .

[11]  K. Exner Design Criteria for Oxygen Evolution Electrocatalysts from First Principles: Introduction of a Unifying Material-Screening Approach , 2019, ACS Applied Energy Materials.

[12]  S. Qiao,et al.  Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation , 2019, ACS Energy Letters.

[13]  Zachary D. Hood,et al.  Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 °C, and Enhanced Catalytic Activity. , 2019, Journal of the American Chemical Society.

[14]  W. Liu,et al.  Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis , 2019, Nature Catalysis.

[15]  Xiaoqing Pan,et al.  Tunable intrinsic strain in two-dimensional transition metal electrocatalysts , 2019, Science.

[16]  W. Liu,et al.  Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. , 2019, Journal of the American Chemical Society.

[17]  Zheng Jiang,et al.  Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media , 2019, Nature Communications.

[18]  Chenghui Zhang,et al.  Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers , 2018, Nature Communications.

[19]  A. Mansour,et al.  Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3D , 2018, The Journal of Physical Chemistry C.

[20]  P. Kuo,et al.  Risk profiles of personality traits for suicidality among mood disorder patients and community controls , 2018, Acta psychiatrica Scandinavica.

[21]  G. Wang,et al.  Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution , 2017 .

[22]  Hong Yang,et al.  High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. , 2017, Journal of the American Chemical Society.

[23]  Reshma R. Rao,et al.  The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces , 2017 .

[24]  Reshma R. Rao,et al.  Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange , 2017 .

[25]  X. Lou,et al.  General Synthesis of Multishell Mixed-Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. , 2017, Angewandte Chemie.

[26]  Yan‐Bing He,et al.  Discovering a First-Order Phase Transition in the Li-CeO2 System. , 2017, Nano letters.

[27]  Joseph H. Montoya,et al.  A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction , 2016, Science.

[28]  J. Gascón,et al.  Iridium-based double perovskites for efficient water oxidation in acid media , 2016, Nature Communications.

[29]  Mian Li,et al.  Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. , 2015, Nanoscale.

[30]  S. Boettcher,et al.  Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. , 2015, Journal of the American Chemical Society.

[31]  M. Willinger,et al.  Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. , 2015, Angewandte Chemie.

[32]  P. P. Wells,et al.  Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores , 2014, Angewandte Chemie.

[33]  C. Berlinguette,et al.  Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. , 2013, Journal of the American Chemical Society.

[34]  Karen E. Swider-Lyons,et al.  In-Situ X-ray Absorption Spectroscopy Analysis of Capacity Fade in Nanoscale-LiCoO2 , 2013 .

[35]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[36]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  P. Kennepohl,et al.  Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes. , 2008, Inorganica chimica acta.

[39]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[40]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[41]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[42]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  José-Luis Ló Pez-Sendó,et al.  Current Opinion , 1916, The Biblical World.

[49]  J. Connell,et al.  Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. , 2014, Faraday discussions.

[50]  T. Baranowski,et al.  How to engage children in self-administered dietary assessment programmes. , 2014, Journal of human nutrition and dietetics : the official journal of the British Dietetic Association.