Quantum conditional query complexity

We define and study a new type of quantum oracle, the quantum conditional oracle, which provides oracle access to the conditional probabilities associated with an underlying distribution. Amongst other properties, we (a) obtain speed-ups over the best known quantum algorithms for identity testing, equivalence testing and uniformity testing of probability distributions; (b) study the power of these oracles for testing properties of boolean functions, and obtain an algorithm for checking whether an $n$-input $m$-output boolean function is balanced or $\epsilon$-far from balanced; and (c) give a sub-linear algorithm, requiring $\tilde{O}(n^{3/4}/\epsilon)$ queries, for testing whether an $n$-dimensional quantum state is maximally mixed or not.

[1]  Ilias Diakonikolas,et al.  Optimal Algorithms for Testing Closeness of Discrete Distributions , 2013, SODA.

[2]  Joshua Brody,et al.  Property Testing Lower Bounds via Communication Complexity , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[3]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  Eldar Fischer,et al.  On the power of conditional samples in distribution testing , 2013, ITCS '13.

[5]  Ronald de Wolf,et al.  New Results on Quantum Property Testing , 2010, FSTTCS.

[6]  Ronitt Rubinfeld,et al.  Testing Closeness of Discrete Distributions , 2010, JACM.

[7]  Daniel M. Kane,et al.  Testing Identity of Structured Distributions , 2014, SODA.

[8]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[9]  Hazen Probability An Introduction with , 2017 .

[10]  Ronitt Rubinfeld,et al.  Testing random variables for independence and identity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[11]  Stanislav Sýkora,et al.  Quantum theory and the bayesian inference problems , 1974 .

[12]  Gregory Valiant,et al.  The Power of Linear Estimators , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[13]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[14]  Ashley Montanaro,et al.  Limitations on Quantum Dimensionality Reduction , 2010, ICALP.

[15]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Clément L. Canonne,et al.  A Chasm Between Identity and Equivalence Testing with Conditional Queries , 2014, APPROX-RANDOM.

[17]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[18]  Sudipto Guha,et al.  Streaming and sublinear approximation of entropy and information distances , 2005, SODA '06.

[19]  A. J. Maria A Remark on Stirling's Formula , 1965 .

[20]  M. Schatzman,et al.  Numerical Analysis: A Mathematical Introduction , 2002 .

[21]  Annalisa De Bonis,et al.  Optimal Two-Stage Algorithms for Group Testing Problems , 2005, SIAM J. Comput..

[22]  Ronitt Rubinfeld,et al.  Testing Probability Distributions Underlying Aggregated Data , 2014, ICALP.

[23]  Annalisa De Bonis Constraining the number of positive responses in adaptive, non-adaptive, and two-stage group testing , 2015, Journal of Combinatorial Optimization.

[24]  Ryan O'Donnell,et al.  Quantum Spectrum Testing , 2015, Communications in Mathematical Physics.

[25]  Ronald de Wolf,et al.  A Survey of Quantum Property Testing , 2013, Theory Comput..

[26]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[27]  Avinatan Hassidim,et al.  Quantum Algorithms for Testing Properties of Distributions , 2009, IEEE Transactions on Information Theory.

[28]  Rocco A. Servedio,et al.  Testing probability distributions using conditional samples , 2012, Electron. Colloquium Comput. Complex..

[29]  Oded Goldreich,et al.  Property Testing - Current Research and Surveys , 2010, Property Testing.

[30]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Andris Ambainis,et al.  Efficient Quantum Algorithms for (Gapped) Group Testing and Junta Testing , 2015, SODA.