Characterizing coherence, correcting incoherence

Lower previsions defined on a finite set of gambles can be looked at as points in a finite-dimensional real vector space. Within that vector space, the sets of sure loss avoiding and coherent lower previsions form convex polyhedra. We present procedures for obtaining characterizations of these polyhedra in terms of a minimal, finite number of linear constraints. As compared to the previously known procedure, these procedures are more efficient and much more straightforward. Next, we take a look at a procedure for correcting incoherent lower previsions based on pointwise dominance. This procedure can be formulated as a multi-objective linear program, and the availability of the finite characterizations provide an avenue for making these programs computationally feasible. We present characterization procedures for the polyhedra of coherent lower previsions.These procedures are more efficient and straightforward than those previously known.We discuss a procedure for correcting incoherent lower previsions.Our characterization procedures can make such corrections computationally feasible.

[1]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[2]  Erik Quaeghebeur,et al.  Learning from samples using coherent lower previsions , 2009 .

[3]  Ralph E. Steuer,et al.  A revised simplex method for linear multiple objective programs , 1973, Math. Program..

[4]  Gert de Cooman,et al.  Extreme lower probabilities , 2008, Fuzzy Sets Syst..

[5]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[6]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  Harold P. Benson,et al.  An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem , 1998, J. Glob. Optim..

[9]  P. Walley,et al.  Direct algorithms for checking consistency and making inferences from conditional probability assessments , 2004 .

[10]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[11]  Lizhen Shao,et al.  A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming , 2012, J. Glob. Optim..

[12]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[13]  Willem J. Selen,et al.  A simplified molp algorithm: The MOLP-S procedure , 1991, Comput. Oper. Res..

[14]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[15]  F. P. A. Coolen,et al.  Elementare Grundbegriffe einer Allgemeineren Wahrscheinlichkeitsrechnung, vol. I, Intervallwahrscheinlichkeit als Umfassendes Konzept , 2003 .

[16]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[17]  Angelo Gilio,et al.  A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments , 2000, Int. J. Approx. Reason..

[18]  Erik Quaeghebeur,et al.  Characterizing the Set of Coherent Lower Previsions with a Finite Number of Constraints or Vertices , 2010, UAI.

[19]  Enrique Miranda,et al.  A survey of the theory of coherent lower previsions , 2008, Int. J. Approx. Reason..

[20]  João Paulo Costa,et al.  An exact method for computing the nadir values in multiple objective linear programming , 2009, Eur. J. Oper. Res..

[21]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[22]  Kenneth L. Clarkson,et al.  More output-sensitive geometric algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  Renato Pelessoni,et al.  Imprecise Previsions For Risk Measurement , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[25]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[26]  Heinz Isermann,et al.  The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program , 1977 .

[27]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[28]  K. Fukuda Frequently Asked Questions in Polyhedral Computation , 2000 .