Characterizing coherence, correcting incoherence
暂无分享,去创建一个
[1] Kurt Weichselberger. The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..
[2] Erik Quaeghebeur,et al. Learning from samples using coherent lower previsions , 2009 .
[3] Ralph E. Steuer,et al. A revised simplex method for linear multiple objective programs , 1973, Math. Program..
[4] Gert de Cooman,et al. Extreme lower probabilities , 2008, Fuzzy Sets Syst..
[5] E. Polak,et al. On Multicriteria Optimization , 1976 .
[6] Komei Fukuda,et al. Double Description Method Revisited , 1995, Combinatorics and Computer Science.
[7] G. Ziegler. Lectures on Polytopes , 1994 .
[8] Harold P. Benson,et al. An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem , 1998, J. Glob. Optim..
[9] P. Walley,et al. Direct algorithms for checking consistency and making inferences from conditional probability assessments , 2004 .
[10] J. Maciejowski,et al. Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .
[11] Lizhen Shao,et al. A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming , 2012, J. Glob. Optim..
[12] Mato Baotic,et al. Multi-Parametric Toolbox (MPT) , 2004, HSCC.
[13] Willem J. Selen,et al. A simplified molp algorithm: The MOLP-S procedure , 1991, Comput. Oper. Res..
[14] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[15] F. P. A. Coolen,et al. Elementare Grundbegriffe einer Allgemeineren Wahrscheinlichkeitsrechnung, vol. I, Intervallwahrscheinlichkeit als Umfassendes Konzept , 2003 .
[16] David Avis,et al. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.
[17] Angelo Gilio,et al. A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments , 2000, Int. J. Approx. Reason..
[18] Erik Quaeghebeur,et al. Characterizing the Set of Coherent Lower Previsions with a Finite Number of Constraints or Vertices , 2010, UAI.
[19] Enrique Miranda,et al. A survey of the theory of coherent lower previsions , 2008, Int. J. Approx. Reason..
[20] João Paulo Costa,et al. An exact method for computing the nadir values in multiple objective linear programming , 2009, Eur. J. Oper. Res..
[21] P. Yu,et al. The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .
[22] Kenneth L. Clarkson,et al. More output-sensitive geometric algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[23] Renato Pelessoni,et al. Imprecise Previsions For Risk Measurement , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[24] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[25] Matthias Ehrgott,et al. Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..
[26] Heinz Isermann,et al. The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program , 1977 .
[27] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[28] K. Fukuda. Frequently Asked Questions in Polyhedral Computation , 2000 .