MPI-based parallel synchronous vector evaluated particle swarm optimization for multi-objective design optimization of composite structures

This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem.

[1]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[2]  S. Vel,et al.  MULTI-OBJECTIVE OPTIMIZATION OF FIBER REINFORCED COMPOSITE LAMINATES FOR STRENGTH, STIFFNESS AND MINIMAL MASS , 2006 .

[3]  Jaco F Schutte,et al.  Evaluation of a particle swarm algorithm for biomechanical optimization. , 2005, Journal of biomechanical engineering.

[4]  J.G. Vlachogiannis,et al.  Determining generator contributions to transmission system using parallel vector evaluated particle swarm optimization , 2005, IEEE Transactions on Power Systems.

[5]  Chuntian Cheng,et al.  Optimizing the distribution of shopping centers with parallel genetic algorithm , 2007, Eng. Appl. Artif. Intell..

[6]  Debabrata Chakraborty,et al.  Multiobjective Optimization of Laminated Composites using Finite Element Method and Genetic Algorithm , 2005 .

[7]  Marc Parizeau,et al.  Analysis of a master-slave architecture for distributed evolutionary computations , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[9]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[10]  Mohammad Reza Ghasemi,et al.  A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions , 2007 .

[11]  Umut Topal,et al.  Multiobjective optimization of angle-ply laminated plates for maximum buckling load , 2010 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Shang-Jeng Tsai,et al.  An improved multi-objective particle swarm optimizer for multi-objective problems , 2010, Expert Syst. Appl..

[14]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[15]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[16]  S. N. Omkar,et al.  Nature inspired optimization techniques for the design optimization of laminated composite structures using failure criteria , 2011, Expert Syst. Appl..

[17]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[18]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[19]  Kevin Tucker,et al.  Response surface approximation of pareto optimal front in multi-objective optimization , 2004 .

[20]  Guillaume Houzeaux,et al.  A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier–Stokes equations , 2003 .

[21]  B J Fregly,et al.  Parallel global optimization with the particle swarm algorithm , 2004, International journal for numerical methods in engineering.

[22]  Woonbong Hwang,et al.  Stacking sequence optimization of laminated plates , 1997 .

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  Mark Walker,et al.  Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbuckling strength using continuous and discrete ply angles , 1996 .

[25]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[26]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[27]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[28]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[29]  Sergei Gorlatch,et al.  Message passing without send-receive , 2002, Future Gener. Comput. Syst..

[30]  Rolf Hempel,et al.  The emergence of the MPI message passing standard for parallel computing , 1999 .

[31]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[32]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[33]  Akira Todoroki,et al.  Permutation genetic algorithm for stacking sequence design of composite laminates , 2000 .

[34]  Sung-Kwun Oh,et al.  The design of a fuzzy cascade controller for ball and beam system: A study in optimization with the use of parallel genetic algorithms , 2009, Eng. Appl. Artif. Intell..

[35]  Y. Rahmat-Samii,et al.  Vector evaluated particle swarm optimization (VEPSO): optimization of a radiometer array antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[36]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[37]  Raphael T. Haftka,et al.  Design and optimization of laminated composite materials , 1999 .

[38]  Carlos A. Coello Coello,et al.  A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm , 2004, MICAI.

[39]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[40]  S. N. Omkar,et al.  Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures , 2008 .

[41]  Rolf Hempel,et al.  The MPI Message Passing Interface Standard , 1994 .

[42]  Yuetsu Kodama,et al.  The design and implementation of MPI collective operations for clusters in long-and-fast networks , 2007, Cluster Computing.

[43]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[44]  Károly Jármai,et al.  Analysis and optimum design of fibre-reinforced composite structures , 2004 .

[45]  Graham F. Carey,et al.  A distributed memory parallel element-by-element scheme for semiconductor device simulation , 2000 .