Estimating failure probabilities

In risk management, often the probability must be estimated that a random vector falls into an extreme failure set. In the framework of bivariate extreme value theory, we construct an estimator for such failure probabilities and analyze its asymptotic properties under natural conditions. It turns out that the estimation error is mainly determined by the accuracy of the statistical analysis of the marginal distributions if the extreme value approximation to the dependence structure is at least as accurate as the generalized Pareto approximation to the marginal distributions. Moreover, we establish confidence intervals and briefly discuss generalizations to higher dimensions and issues arising in practical applications as well.

[1]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[2]  Sidney I. Resnick,et al.  Estimating the limit distribution of multivariate extremes , 1993 .

[3]  Juan-Juan Cai,et al.  Estimation of extreme risk regions under multivariate regular variation , 2011, 1211.5239.

[4]  Jonathan A. Tawn,et al.  Comparison of approaches for estimating the probability of coastal flooding , 2002 .

[5]  L. de Haan,et al.  Bivariate tail estimation: dependence in asymptotic independence , 2004 .

[6]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[7]  P. Müller,et al.  Fitting and Validation of a Bivariate Model for Large Claims , 2008 .

[8]  J. Geluk Π-regular variation , 1981 .

[9]  J. Segers MAX-STABLE MODELS FOR MULTIVARIATE EXTREMES , 2012, 1204.0332.

[10]  L. Haan,et al.  Extreme value theory , 2006 .

[11]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[12]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[13]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[14]  Laurens de Haan,et al.  Sea and Wind: Multivariate Extremes at Work , 1998 .

[15]  M. Schreiber Differential Forms: A Heuristic Introduction , 1977 .

[16]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[17]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[18]  Laurens de Haan,et al.  Approximations to the tail empirical distribution function with application to testing extreme value conditions , 2006 .

[19]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[20]  Peter Müller Modeling Dependencies in Large Insurance Claims , 2009 .

[21]  L. de Haan,et al.  Estimating the probability of a rare event , 1999 .