HITEMP, the high-temperature molecular spectroscopic database

[1]  P. Bernath,et al.  Revised molecular constants and term values for the X2Π state of CH , 2010 .

[2]  R. Tolchenov,et al.  A high accuracy computed line list for the HDO molecule , 2010 .

[3]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers , 2013 .

[4]  J. Tennyson,et al.  A variationally computed T = 300 K line list for NH3. , 2009, The journal of physical chemistry. A.

[5]  Robert R. Gamache,et al.  N2-, O2-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H216O , 2009 .

[6]  P. Bernath,et al.  Revised molecular constants and term values for the X3Σ− and A3Π states of NH , 2009 .

[7]  P. Bernath,et al.  IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for H217O and H218O , 2009 .

[8]  Ralf Schneider,et al.  Ab initio modeling of molecular IR spectra of astrophysical interest: Application to CH4 , 2009 .

[9]  J. Bailey A comparison of water vapor line parameters for modeling the Venus deep atmosphere , 2009, 0901.3869.

[10]  P. Bernath,et al.  Revised molecular constants and term values for the X2Pand 2BS+ states of OH , 2009 .

[11]  R. R. Gamache,et al.  HALF-WIDTHS, THEIR TEMPERATURE DEPENDENCE, AND LINE SHIFTS FOR THE ROTATION BAND OF H$_2$$^{16}$O , 2009 .

[12]  S. Mikhailenko,et al.  ICLAS of water in the 770 nm transparency window (12 746–13 558 cm−1). Comparison with current experimental and calculated databases , 2008 .

[13]  V. Boudon,et al.  The partition sum of methane at high temperature , 2008 .

[14]  J. Tennyson,et al.  Water in the near-infrared spectrum of comet 8P/Tuttle , 2008, 0809.3687.

[15]  V. I. Perevalov,et al.  CDSD-296 (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications , 2008 .

[16]  G. Groenenboom,et al.  Erratum: "Theoretical transition probabilities for the OH Meinel system" [J. Chem. Phys. 126, 114314 (2007)]. , 2008, The Journal of chemical physics.

[17]  B. Braams,et al.  Ab initio modeling of molecular IR spectra of astrophysical interest: Application to CH 4 , 2008 .

[18]  Laurence S. Rothman,et al.  Current updates of the water-vapor line list in HITRAN: A new “Diet” for air-broadened half-widths , 2007 .

[19]  J. Fujimoto,et al.  High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. , 2007, Optics express.

[20]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[21]  G. Groenenboom,et al.  Theoretical transition probabilities for the OH Meinel system. , 2007, The Journal of chemical physics.

[22]  A. Soufiani,et al.  Approximate radiative properties of methane at high temperature , 2007 .

[23]  A. Boischot,et al.  A spectroscopic database for water vapor adapted to spectral properties at high temperature, and moderate resolution , 2007 .

[24]  T. Rizzo,et al.  A direct measurement of the dissociation energy of water. , 2006, The Journal of chemical physics.

[25]  V. Malathy Devi,et al.  Air-broadening of H2O as a function of temperature: 696–2163 cm−1 , 2006 .

[26]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[27]  P. Bernath,et al.  Spectrum of hot water in the 2000-4750 cm 1 frequency range , 2006 .

[28]  Laurence S. Rothman,et al.  Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database , 2006 .

[29]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[30]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[31]  Laurence S. Rothman,et al.  Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines , 2005 .

[32]  Michael F. Modest,et al.  High-accuracy, compact database of narrow-band k-distributions for water vapor and carbon dioxide , 2005 .

[33]  P. Bernath,et al.  A 3000 K laboratory emission spectrum of water. , 2005, The Journal of chemical physics.

[34]  M. Modest,et al.  A multiscale Malkmus model for treatment of inhomogeneous gas paths , 2005 .

[35]  Robert R. Gamache,et al.  Lineshape parameters for water vapor in the 3.2–17.76 μm region for atmospheric applications , 2005 .

[36]  M. Birk,et al.  Collisional parameters of H2O lines: effect of temperature , 2005 .

[37]  Robert R. Gamache,et al.  An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor , 2004 .

[38]  Michael F. Modest,et al.  Full spectrum k-distribution correlations for CO2 from the CDSD-1000 spectroscopic databank , 2004 .

[39]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[40]  Jonathan Tennyson,et al.  Spectroscopically determined potential energy surface of H216O up to 25 000 cm−1 , 2003 .

[41]  Ann Carine Vandaele,et al.  Spectroscopic constants and term values for the X2πi state of OH (v = 0-10) , 2002 .

[42]  Branko Ruscic,et al.  On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl , 2002 .

[43]  M. Modest,et al.  Medium resolution transmission measurements of CO2 at high temperature—an update , 2002 .

[44]  R. S. Williamson,et al.  Experimental Energy Levels of the Water Molecule , 2001 .

[45]  P. Jensen,et al.  H2O in stellar atmospheres , 2001 .

[46]  J. Tennyson,et al.  Accurate partition function and thermodynamic data for water , 2000 .

[47]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[48]  Vincent Boudon,et al.  Highly-spherical Top Data System (HTDS) software for spectrum simulation of octahedral XY6 molecules , 2000 .

[49]  P. Bernath,et al.  Using Laboratory Spectroscopy to Identify Lines in the K- and L-Band Spectrum of Water in a Sunspot , 2000 .

[50]  D. Osterbrock,et al.  TERM ENERGIES, LINE POSITIONS, AND SPECTROSCOPIC CONSTANTS FOR THE OH MEINEL BAND SYSTEM , 2000 .

[51]  A. Goldman,et al.  NITRIC OXIDE LINE PARAMETERS: REVIEW OF 1996 HITRAN UPDATE AND NEW RESULTS , 1998 .

[52]  A. Goldman,et al.  Updated line parameters for OH X2II–X2II (ν′',ν′) Transitions , 1998 .

[53]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[54]  B. Green,et al.  The effects of centrifugal distortion on the infrared radiative transition probabilities of NO(X2II) , 1996 .

[55]  Christian Servais,et al.  A New Analysis of the OH Radical Spectrum from Solar Infrared Observations , 1995 .

[56]  Laurent H. Coudert,et al.  THE SPECTRUM OF NITRIC OXIDE BETWEEN 1700 AND 2100 CM-1 , 1995 .

[57]  Laurence S. Rothman,et al.  HITRAN HAWKS and HITEMP: high-temperature molecular database , 1995, Defense, Security, and Sensing.

[58]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[59]  M. Rao,et al.  High-resolution Fourier transform spectroscopy of the Meinel system of OH , 1994 .

[60]  C. Bauschlicher,et al.  Theoretical dipole moment for the X 2Π state of NO , 1994 .

[61]  Lawrence P. Giver,et al.  The nitric oxide fundamental band : frequency and shape parameters for rovibrational lines , 1994 .

[62]  P. Jensen,et al.  The Dipole Moment Surface and the Vibrational Transition Moments of H2O , 1993 .

[63]  David Crisp,et al.  Near-infrared light from Venus' nightside - A spectroscopic analysis , 1993 .

[64]  L. Rothman,et al.  Direct numerical diagonalization: Wave of the future , 1992 .

[65]  L. Rothman,et al.  Extension of the hitran database to non-LTE applications , 1992 .

[66]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[67]  Sumner P. Davis,et al.  Rovibrational intensities and electric dipole moment function of the X2Π hydroxyl radical , 1992 .

[68]  D. Galant,et al.  The solution of coupled Schrödinger equations using an extrapolation method , 1992 .

[69]  D. Galant,et al.  Schrödinger's radial equation: Solution by extrapolation , 1992 .

[70]  David J. Nesbitt,et al.  H+O3 Fourier‐transform infrared emission and laser absorption studies of OH (X 2Π) radical: An experimental dipole moment function and state‐to‐state Einstein A coefficients , 1990 .

[71]  P. Jensen The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach , 1989 .

[72]  G. Schatz A program for determining primitive semiclassical eigenvalues for vibrating/rotating nonlinear triatomic molecules , 1988 .

[73]  A Goldman,et al.  The HITRAN database: 1986 edition. , 1987, Applied optics.

[74]  M. Eidelsberg,et al.  Reinvestigation of the vacuum ultraviolet spectrum of CO and isotopic species: The B1Σ+ ↔ X1Σ+ transition , 1987 .

[75]  A. Coppalle,et al.  Spectral emissivities of H2O vapor at 2900 K in the 1-9-μm region , 1986 .

[76]  C. Amiot The infrared emission spectrum of NO: Analysis of the Δv = 3 sequence up to v = 22 , 1982 .

[77]  J. A. Coxon,et al.  Rotational analysis of hydroxyl vibration–rotation emission bands: Molecular constants for OH X2Π, 6 ≤ ν ≤ 10 , 1982 .

[78]  J. A. Coxon Optimum molecular constants and term values for the X2Π(ν ≤ 5) and A2Σ+(ν ≤ 3) states of OH , 1980 .

[79]  R. A. McClatchey,et al.  AFCRL atmospheric absorption line parameters compilation , 1973 .

[80]  C. Ludwig,et al.  High-Temperature Spectral Emissivities and Total Intensities of the 15-μ Band System of CO 2 * , 1966 .

[81]  W. O. Davies Carbon Dioxide Dissociation at 6000° to 11 000°K , 1965 .

[82]  M. Brook,et al.  Dissociation Energy of NO and N 2 , 1954 .

[83]  I. Meinel,et al.  OH Emission Bands in the Spectrum of the Night Sky. , 1950 .