Complementarity eigenvalue problems for nonlinear matrix pencils

This work deals with a class of nonlinear complementarity eigenvalue problems that, from a mathematical point of view, can be written as an equilibrium model [A(λ)B(λ)C(λ)D(λ)][uw]=[v0],u≥0,v≥0,uTv=0,where the vectors u and v are subject to complementarity constraints. The block structured matrix appearing in this partially constrained equilibrium model depends continuously on a real scalar λ ∈ Λ. Such a scalar plays the role of a non-dimensional load parameter, but it may have also other physical meanings. The symbol Λ stands for a given bounded interval, possibly non-closed. The numerical problem at hand is to find all the values of λ (and, in particular, the smallest one) for which the above equilibrium model admits a nontrivial solution. By using the so-called Facial Reduction Technique, we solve efficiently such a numerical problem in various randomly generated test examples and in two mechanical examples of unilateral buckling of columns.

[1]  A. Seeger Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .

[2]  Samir Adly,et al.  A nonsmooth algorithm for cone-constrained eigenvalue problems , 2011, Comput. Optim. Appl..

[3]  Samir Adly,et al.  A new method for solving Pareto eigenvalue complementarity problems , 2013, Comput. Optim. Appl..

[4]  Zhaojun Bai,et al.  Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..

[5]  Alberto Seeger,et al.  Cone-constrained eigenvalue problems: theory and algorithms , 2010, Comput. Optim. Appl..

[6]  T. Kaczorek Polynomial and Rational Matrices: Applications in Dynamical Systems Theory , 2006 .

[7]  Joaquim Júdice,et al.  The symmetric eigenvalue complementarity problem , 2003, Math. Comput..

[8]  Samir Adly,et al.  A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems , 2015, J. Optim. Theory Appl..

[9]  Joaquim Júdice,et al.  On the quadratic eigenvalue complementarity problem , 2016, J. Glob. Optim..

[10]  Hanif D. Sherali,et al.  The eigenvalue complementarity problem , 2007, Comput. Optim. Appl..

[11]  Stavroula J. Pantazopoulou,et al.  DETAILING FOR REINFORCEMENT STABILITY IN RC MEMBERS , 1998 .

[12]  Alberto Seeger,et al.  Quadratic Eigenvalue Problems under Conic Constraints , 2011, SIAM J. Matrix Anal. Appl..

[13]  A D Kerr ON THERMAL BUCKLING OF STRAIGHT RAILROAD TRACKS AND THE EFFECT OF TRACK LENGTH ON THE TRACK RESPONSE , 1976 .

[14]  Masao Fukushima,et al.  On the symmetric quadratic eigenvalue complementarity problem , 2014, Optim. Methods Softw..

[15]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[16]  R. K. Livesley,et al.  Stability functions for structural frameworks , 1956 .