Intricate dynamics of rogue waves governed by the Sasa–Satsuma equation

[1]  A. Ankiewicz,et al.  Generalised Sasa–Satsuma Equation: Densities Approach to New Infinite Hierarchy of Integrable Evolution Equations , 2018, Zeitschrift für Naturforschung A.

[2]  N. Akhmediev,et al.  Sasa-Satsuma hierarchy of integrable evolution equations. , 2018, Chaos.

[3]  Zhenyun Qin,et al.  Dynamic patterns of high-order rogue waves for Sasa–Satsuma equation , 2016 .

[4]  Jingsong He,et al.  Darboux transformation and Rogue waves of the Kundu–nonlinear Schrödinger equation , 2015 .

[5]  M. Gastineau,et al.  Tenth order solutions to the NLS equation with eighteen parameters , 2015 .

[6]  Dumitru Mihalache,et al.  Vector rogue waves in the Manakov system: diversity and compossibility , 2015 .

[7]  Norbert Hoffmann,et al.  Rogue wave spectra of the Sasa–Satsuma equation , 2015 .

[8]  Philippe Grelu,et al.  Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Zhenyun Qin,et al.  Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation , 2014 .

[10]  Gui Mu,et al.  Dynamics of Rogue Waves on a Multisoliton Background in a Vector Nonlinear Schrödinger Equation , 2014, SIAM J. Appl. Math..

[11]  Y. Ohta,et al.  General rogue waves in the focusing and defocusing Ablowitz–Ladik equations , 2014, 1402.1537.

[12]  Shihua Chen Twisted rogue-wave pairs in the Sasa-Satsuma equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Li-Chen Zhao,et al.  Dynamics of nonautonomous rogue waves in Bose-Einstein condensate , 2013 .

[14]  S. K. Sharma,et al.  Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions , 2013 .

[15]  Jingsong He,et al.  The n‐order rogue waves of Fokas–Lenells equation , 2012, 1211.5924.

[16]  A. Fokas,et al.  Generating mechanism for higher-order rogue waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Zhenyun Qin,et al.  Matter rogue waves in an F=1 spinor Bose-Einstein condensate. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  U. Bandelow,et al.  Sasa-Satsuma equation: soliton on a background and its limiting cases. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Zhenyun Qin,et al.  Rogue Waves for the Coupled Schrödinger–Boussinesq Equation and the Coupled Higgs Equation , 2012 .

[20]  Yasuhiro Ohta,et al.  Rogue waves in the Davey-Stewartson I equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  A. Degasperis,et al.  Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. , 2012, Physical review letters.

[22]  Uwe Bandelow,et al.  Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa-Satsuma case , 2012 .

[23]  K. Porsezian,et al.  New Types of Rogue Wave in an Erbium-Doped Fibre System , 2012 .

[24]  P. Shukla,et al.  Surface plasma rogue waves , 2011 .

[25]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Ira Didenkulova,et al.  Rogue waves in nonlinear hyperbolic systems (shallow-water framework) , 2011 .

[27]  John M. Dudley,et al.  Rogue wave early warning through spectral measurements , 2011 .

[28]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[29]  R. Grimshaw,et al.  Rogue internal waves in the ocean: Long wave model , 2010 .

[30]  Bahram Jalali,et al.  Rogue waves – towards a unifying concept?: Discussions and debates , 2010 .

[31]  Efim Pelinovsky,et al.  Editorial – Introductory remarks on “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?” , 2010 .

[32]  V. Shrira,et al.  What makes the Peregrine soliton so special as a prototype of freak waves? , 2010 .

[33]  V. Konotop,et al.  Matter rogue waves , 2009 .

[34]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[36]  P. McClintock,et al.  Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. , 2008, Physical review letters.

[37]  Harald E. Krogstad,et al.  Oceanic Rogue Waves , 2008 .

[38]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[39]  Otis C. Wright,et al.  Sasa-Satsuma Equation, Unstable Plane Waves and Heteroclinic Connections , 2007 .

[40]  A. Slunyaev A high-order nonlinear envelope equation for gravity waves in finite-depth water , 2005 .

[41]  M. Trippenbach,et al.  Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media , 1998 .

[42]  Karsten Trulsen,et al.  A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water , 1996 .

[43]  D. Mihalache,et al.  The Riemann problem method for solving a perturbed nonlinear Schrodinger equation describing pulse propagation in optic fibres , 1994 .

[44]  L. Torner,et al.  Inverse-scattering approach to femtosecond solitons in monomode optical fibers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  L. Torner,et al.  Soliton solutions for a perturbed nonlinear Schrodinger equation , 1993 .

[46]  Cavalcanti,et al.  Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[47]  M. Tabor,et al.  Exact solutions for an extended nonlinear Schrödinger equation , 1991 .

[48]  Junkichi Satsuma,et al.  New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation , 1991 .

[49]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[50]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[51]  T. Kofané,et al.  Akhmediev–Peregrine rogue waves generation in a composite right/left-handed transmission line , 2015 .

[52]  N. Akhmediev,et al.  N-modulation signals in a single-mode optical waveguide under nonlinear conditions , 2009 .

[53]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .