Numerical algorithms and simulations for reflected backward stochastic differential equations with two continuous barriers

In this paper we study different algorithms for reflected backward stochastic differential equations (BSDE in short) with two continuous barriers based on the framework of using a binomial tree to simulate 1-d Brownian motion. We introduce numerical algorithms by the penalization method and the reflected method, respectively. In the end simulation results are also presented.

[1]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[2]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[3]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[4]  J. Douglas,et al.  Numerical methods for forward-backward stochastic differential equations , 1996 .

[5]  B. Delyon,et al.  On the robustness of backward stochastic differential equations , 2002 .

[6]  J. Chassagneux Discrete-time approximation of doubly reflected BSDEs , 2018 .

[7]  S. Peng,et al.  The smallest g-supermartingale and reflected BSDE with single and double L2 obstacles , 2005 .

[8]  Jin Liang,et al.  On the rate of convergence of the binomial tree scheme for American options , 2007, Numerische Mathematik.

[9]  J. Lepeltier,et al.  Backward SDEs with two barriers and continuous coefficient: an existence result , 2004, Journal of Applied Probability.

[10]  Shige Peng,et al.  Reflected BSDE with a constraint and its applications in an incomplete market , 2010 .

[11]  David Chevance Résolution numérique des équations différentielles stochastiques rétrogrades , 1997 .

[12]  P. Protter,et al.  Numberical Method for Backward Stochastic Differential Equations , 2002 .

[13]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[14]  G. Pagès,et al.  A quantization algorithm for solving multi-dimensional Optimal Stopping problems , 2007 .

[15]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[16]  Huu Tue Huynh,et al.  Solution of Stochastic Differential Equations , 2012 .

[17]  S. Peng,et al.  Convergence of solutions of discrete reflected backward SDE’s and simulations , 2008 .

[18]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .

[19]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[20]  F. Coquet,et al.  Stability in D of martingales and backward equations under discretization of filtration , 1998 .

[21]  B. Delyon,et al.  DONSKER-TYPE THEOREM FOR BSDES , 2001 .

[22]  C. Xing,et al.  Packing superballs from codes and algebraic curves , 2008 .

[23]  Min Dai,et al.  Convergence of Binomial Tree Method for European/American Path-Dependent Options , 2004, SIAM J. Numer. Anal..

[24]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[25]  J. Lepeltier,et al.  Reflected backward stochastic differential equations with two RCLL barriers , 2007 .

[26]  J. Lepeltier,et al.  Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier , 2005 .

[27]  S. Peng,et al.  Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations , 2011 .

[28]  Weian Zheng,et al.  DISCRETIZING A BACKWARD STOCHASTIC DIFFERENTIAL EQUATION , 2002 .