Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms

We introduce new two-sided Arnoldi recursions and use them to define a model reduction procedure for large, linear, time-invariant, multi-input/multi-output differential algebraic systems. We prove that this procedure has desirable moment matching properties. We define a corresponding model reduction procedure which is based on a band nonsymmetric Lanczos recursion and prove that if the deflation is exact and there are no breakdowns in the recursions, then these two model reduction procedures generate identical reduced-order systems. We prove similar equivalences for corresponding eigenelement procedures. We concentrate on the theoretical properties of the new algorithms.

[1]  Jane Cullum Iterative methods for solvingAx=b, GMRES/FOM versus QMR/BiCG , 1996, Adv. Comput. Math..

[2]  A. Ruehli,et al.  A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation , 2000 .

[3]  Zhaojun Bai,et al.  Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem , 1994 .

[4]  Jane Cullum,et al.  Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems , 1996 .

[5]  J. Cullum,et al.  A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.

[6]  W. Kerner Large-scale complex eigenvalue problems , 1989 .

[7]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[8]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[9]  Imad M. Jaimoukha,et al.  Oblique Production Methods for Large Scale Model Reduction , 1995, SIAM J. Matrix Anal. Appl..

[10]  Axel Ruhe The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .

[11]  Roland W. Freund,et al.  A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..

[12]  J. Cullum,et al.  A generalized nonsymmetric Lanczos procedure , 1989 .

[13]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[14]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[15]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.