Scheduling series-parallel orders subject to 0/1-communication delays

Abstract We consider the problem P ∞|prec, c ij ∈{0,1}| κ of scheduling jobs with arbitrary processing times on sufficiently many parallel processors subject to series–parallel precedence constraints and 0/1-communication delays in order to minimize a regular performance measure κ . Such schedules without processor restrictions are used for generating approximate solutions for a restricted number of processors. For unit time communication delays we derive polynomial algorithms to construct optimal schedules when the performance measure κ is the makespan or the average weighted completion time. For n jobs and r precedence constraints, the run times of these algorithms are O (n+r) and O (n 3 ) , respectively. On the other hand, both problems are shown to be NP-hard in the same model for 0/1-communication delays.

[1]  Andreas S. Schulz,et al.  Optimal Routing of Traffic Flows with Length Restrictions in Networks with Congestion , 1999 .

[2]  Han Hoogeveen,et al.  Three, four, five, six, or the complexity of scheduling with communication delays , 1994, Oper. Res. Lett..

[3]  Marc Uetz,et al.  Resource-constrained project scheduling: from a lagrangian relaxation to competitive solutions , 2000 .

[4]  Esther M. Arkin,et al.  Optimal covering tours with turn costs , 2001, SODA '01.

[5]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[6]  Han Hoogeveen,et al.  Non-Approximability Results for Scheduling Problems with Minsum Criteria , 1998, INFORMS J. Comput..

[7]  Martin Skutella,et al.  Semidefinite relaxations for parallel machine scheduling , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  Gerhard J. Woeginger,et al.  A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines , 2000, Math. Oper. Res..

[9]  Matthias Müller-Hannemann Shelling Hexahedral Complexes for Mesh Generation , 2001, J. Graph Algorithms Appl..

[10]  Evripidis Bampis,et al.  Scheduling UET-UCT Series-Parallel Graphs on Two Processors , 1996, Theor. Comput. Sci..

[11]  Rolf H. Möhring,et al.  Scheduling Jobs with Communication Delays: Using Infeasible Solutions for Approximation (Extended Abstract) , 1996, ESA.

[12]  Martin Skutella,et al.  Cooperative facility location games , 2000, SODA '00.

[13]  Marc Uetz,et al.  Scheduling Scarce Resources in Chemical Engineering , 2001 .

[14]  Rolf H. Möhring,et al.  Computationally Tractable Classes of Ordered Sets , 1989 .

[15]  Rolf H. Möhring,et al.  Exact Algorithms for the Minimum-Cost Embeddings of Reliable Virtual Private Networks into Telecommunication Networks , 1999 .

[16]  Rolf H. Möhring,et al.  Linear preselective policies for stochastic project scheduling , 2000, Math. Methods Oper. Res..

[17]  Stefan Felsner,et al.  Interval Reductions and Extensions of Orders: Bijections to Chains in Lattices , 1998 .

[18]  Claire Hanen,et al.  An approximation algorithm for scheduling dependent tasks on m processors with small communication delays , 2001, Discret. Appl. Math..

[19]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[20]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[21]  Rolf H. Möhring,et al.  Forcing relations for AND/OR precedence constraints , 2000, SODA '00.

[22]  Andreas S. Schulz,et al.  A Note on Scheduling Problems with Irregular Starting Time Costs , 2000 .

[23]  Karsten Weihe,et al.  On the discrete core of quadrilateral mesh refinement , 1999 .

[24]  Andreas S. Schulz,et al.  An oracle-polynomial time augmentation algorithm for integer programming , 1999, SODA '99.

[25]  P. Chrétienne A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like precedence constraints , 1989 .

[26]  Rolf H. Möhring,et al.  A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks , 2001, Ann. Oper. Res..

[27]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[28]  Rolf H. Möhring,et al.  A Simple Approximation Algorithm for Scheduling Forests with Unit Processing Times and Zero-One Communication Delays , 1995 .