Bayesian semiparametric Wiener system identification
暂无分享,去创建一个
[1] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[2] Lennart Ljung,et al. Identification of Hammerstein-Wiener models , 2013, Autom..
[3] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[4] Fredrik Lindsten,et al. Ancestor Sampling for Particle Gibbs , 2012, NIPS.
[5] Michael I. Jordan,et al. A Semiparametric Bayesian Approach to Wiener System Identification , 2012 .
[6] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[7] Fredrik Lindsten,et al. On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[8] A. Doucet,et al. Sparsity-Promoting Bayesian Dynamic Linear Models , 2012, 1203.0106.
[9] I. Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .
[10] L. Dousset. Understanding Human Relations (Kinship Systems) , 2011 .
[11] Bart De Moor,et al. Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .
[12] Michael I. Jordan,et al. Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.
[13] Warren B. Powell,et al. Dirichlet Process Mixtures of Generalized Linear Models , 2009, J. Mach. Learn. Res..
[14] L. Ljung,et al. Blind Identification of Wiener Models , 2011 .
[15] Giorgio Battistelli,et al. Model-free Adaptive Switching Control of Uncertain Time-Varying Plants , 2011 .
[16] A. Doucet,et al. Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.
[17] F Gustafsson,et al. Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.
[18] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[19] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[20] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[21] G. Pillonetto,et al. Gaussian Processes for Wiener-Hammerstein system identification , 2009 .
[22] Emily B. Fox,et al. Bayesian nonparametric learning of complex dynamical phenomena , 2009 .
[23] Arnaud Doucet,et al. Sparse Bayesian nonparametric regression , 2008, ICML '08.
[24] G. Casella,et al. The Bayesian Lasso , 2008 .
[25] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[26] W. Greblicki,et al. Nonparametric system identification , 2008 .
[27] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[28] Rik Pintelon,et al. Blind Maximum-Likelihood Identification of Wiener Systems , 2009, IEEE Transactions on Signal Processing.
[29] M. Schervish,et al. On posterior consistency in nonparametric regression problems , 2007 .
[30] Raviv Raich,et al. Subspace based approaches for Wiener system identification , 2005, IEEE Transactions on Automatic Control.
[31] S. Walker,et al. Extending Doob's consistency theorem to nonparametric densities , 2004 .
[32] Constance de Koning,et al. Editors , 2003, Annals of Emergency Medicine.
[33] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[34] Er-Wei Bai,et al. A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..
[35] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[36] George Eastman House,et al. Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .
[37] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[38] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[39] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[40] L. Wasserman,et al. The consistency of posterior distributions in nonparametric problems , 1999 .
[41] Karim Abed-Meraim,et al. Blind system identification , 1997, Proc. IEEE.
[42] Wlodzimierz Greblicki,et al. Nonparametric approach to Wiener system identification , 1997 .
[43] W. R. Cluett,et al. Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .
[44] David J. C. MacKay,et al. BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .
[45] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[46] M. Verhaegen,et al. Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[47] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[48] Radford M. Neal. Bayesian learning for neural networks , 1995 .
[49] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[50] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[51] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[52] A. Raftery,et al. How Many Iterations in the Gibbs Sampler , 1991 .
[53] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[54] Grace L. Yang,et al. On Bayes Procedures , 1990 .
[55] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[56] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[57] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[58] A. Hammerstein. Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .