Bayesian semiparametric Wiener system identification

[1]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[2]  Lennart Ljung,et al.  Identification of Hammerstein-Wiener models , 2013, Autom..

[3]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[4]  Fredrik Lindsten,et al.  Ancestor Sampling for Particle Gibbs , 2012, NIPS.

[5]  Michael I. Jordan,et al.  A Semiparametric Bayesian Approach to Wiener System Identification , 2012 .

[6]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[7]  Fredrik Lindsten,et al.  On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  A. Doucet,et al.  Sparsity-Promoting Bayesian Dynamic Linear Models , 2012, 1203.0106.

[9]  I. Castillo A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .

[10]  L. Dousset Understanding Human Relations (Kinship Systems) , 2011 .

[11]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[12]  Michael I. Jordan,et al.  Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.

[13]  Warren B. Powell,et al.  Dirichlet Process Mixtures of Generalized Linear Models , 2009, J. Mach. Learn. Res..

[14]  L. Ljung,et al.  Blind Identification of Wiener Models , 2011 .

[15]  Giorgio Battistelli,et al.  Model-free Adaptive Switching Control of Uncertain Time-Varying Plants , 2011 .

[16]  A. Doucet,et al.  Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.

[17]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[18]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[19]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[20]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[21]  G. Pillonetto,et al.  Gaussian Processes for Wiener-Hammerstein system identification , 2009 .

[22]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .

[23]  Arnaud Doucet,et al.  Sparse Bayesian nonparametric regression , 2008, ICML '08.

[24]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[25]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[26]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[27]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[28]  Rik Pintelon,et al.  Blind Maximum-Likelihood Identification of Wiener Systems , 2009, IEEE Transactions on Signal Processing.

[29]  M. Schervish,et al.  On posterior consistency in nonparametric regression problems , 2007 .

[30]  Raviv Raich,et al.  Subspace based approaches for Wiener system identification , 2005, IEEE Transactions on Automatic Control.

[31]  S. Walker,et al.  Extending Doob's consistency theorem to nonparametric densities , 2004 .

[32]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[33]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[34]  Er-Wei Bai,et al.  A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[35]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[36]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[37]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[38]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[39]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[40]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[41]  Karim Abed-Meraim,et al.  Blind system identification , 1997, Proc. IEEE.

[42]  Wlodzimierz Greblicki,et al.  Nonparametric approach to Wiener system identification , 1997 .

[43]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[44]  David J. C. MacKay,et al.  BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[46]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[47]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[48]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[49]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[50]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[51]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[52]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[53]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[54]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[55]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[56]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[57]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[58]  A. Hammerstein Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .