A Low‐Dispersive Symplectic Partitioned Runge–Kutta Method for Solving Seismic‐Wave Equations: II. Wavefield Simulations

In a companion paper (Ma et al. , 2014), we proposed a series of nearly analytic symplectic Runge–Kutta (NSPRK) methods with fourth‐order spatial accuracy and with second‐, third‐, and fourth‐order temporal accuracy. In this article, the NSPRK(2,4) scheme, which is temporally second order and the most efficient of the NSPRK schemes, is applied to 3D seismic modeling. We apply the NSPRK(2,4) scheme to simulate acoustic or elastic wave propagation in common 3D medium models, including a three‐layer acoustic model and a vertical transversely isotropic model. A model with a fluid‐filled fracture is used to study elastic wave propagation. When it was necessary to truncate the computational domain, we used the classical split‐field perfectly matched layer (PML) approach to eliminate reflected waves. Compared with conventional methods, the NSPRK method requires only a little additional computation and memory storage on PML domains to obtain a large absorption effect. Numerical results show no visible numerical dispersion, although all simulations were done on relatively coarse grids. These promising numerical results support the use of NSPRK‐type schemes on large‐scale practical models. The NSPRK method with symplecticity‐preserving properties can provide more accurate wave amplitudes than other methods. Online Material: MATLAB code.

[1]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[2]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[3]  Dinghui Yang,et al.  A Nearly Analytic Discrete Method for Acoustic and Elastic Wave Equations in Anisotropic Media , 2003 .

[4]  J. Carcione,et al.  Seismic modelingSeismic modeling , 2002 .

[5]  Tong W. Fei,et al.  Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport , 1993 .

[6]  Paul L. Stoffa,et al.  Determination of finite-difference weights using scaled binomial windows , 2012 .

[7]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[8]  Dinghui Yang,et al.  High accuracy wave simulation – Revised derivation, numerical analysis and testing of a nearly analytic integration discrete method for solving acoustic wave equation , 2011 .

[9]  L. Thomsen Weak elastic anisotropy , 1986 .

[10]  Robert J. Geller,et al.  Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case , 1998 .

[11]  Martin Galis,et al.  On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio , 2010 .

[12]  Lei Wang,et al.  A Split-Step Algorithm for Effectively Suppressing the Numerical Dispersion for 3D Seismic Propagation Modeling , 2010 .

[13]  Kristel C. Meza-Fajardo,et al.  Study of the Accuracy of the Multiaxial Perfectly Matched Layer for the Elastic‐Wave Equation , 2012 .

[14]  Dinghui Yang,et al.  Symplectic stereomodelling method for solving elastic wave equations in porous media , 2014 .

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  Mrinal K. Sen,et al.  Finite-difference modeling with adaptive variable-length spatial operators , 2011 .

[17]  Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms , 2012 .

[18]  Tariq Alkhalifah,et al.  Acoustic approximations for processing in transversely isotropic media , 1998 .

[19]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[20]  Ladislav Halada,et al.  3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion , 2000 .

[21]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[22]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[23]  Guojie Song,et al.  A Low-Dispersive Symplectic Partitioned Runge-Kutta Method for Solving Seismic-Wave Equations: I. Scheme and Theoretical Analysis , 2014 .

[24]  Wenshuai Wang,et al.  Structure-preserving modelling of elastic waves: a symplectic discrete singular convolution differentiator method , 2012 .

[25]  Dinghui Yang,et al.  Optimally Accurate Nearly Analytic Discrete Scheme for Wave-Field Simulation in 3D Anisotropic Media , 2007 .

[26]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[27]  Lei Wang,et al.  An explicit split‐step algorithm of the implicit Adams method for solving 2‐D acoustic and elastic wave equations , 2010 .

[28]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[29]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[30]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[31]  J. Harris,et al.  Two-dimensional finite-difference seismic modeling of an open fluid-filled fracture: Comparison of thin-layer and linear-slip models , 2005 .

[32]  Erik H. Saenger,et al.  Effective velocities in fractured media: a numerical study using the rotated staggered finite‐difference grid , 2002 .

[33]  Mrinal K. Sen,et al.  A practical implicit finite-difference method: examples from seismic modelling , 2009 .

[34]  Zhang Mei-Qing,et al.  Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations , 1990 .

[35]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[36]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[37]  Meigen Zhang,et al.  Scalar Seismic-Wave Equation Modeling by a Multisymplectic Discrete Singular Convolution Differentiator Method , 2011 .

[38]  Jianfeng Zhang,et al.  Elastic wave modeling in fractured media with an explicit approach , 2005 .

[39]  Dinghui Yang,et al.  Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique , 2002 .

[40]  Dinghui Yang,et al.  A nearly analytic symplectically partitioned Runge–Kutta method for 2-D seismic wave equations , 2011 .

[41]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[42]  Mrinal K. Sen,et al.  Finite‐difference modelling of S‐wave splitting in anisotropic media , 2008 .

[43]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[44]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[45]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[46]  Robert J. Geller,et al.  Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media , 2000 .

[47]  J. Groenenboom,et al.  Scattering by hydraulic fractures : Finite-difference modeling and laboratory data , 2000 .

[48]  D. Givoli Non-reflecting boundary conditions , 1991 .

[49]  P. Stoffa,et al.  Finite‐difference modeling in transversely isotropic media , 1994 .

[50]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[51]  R. Geller,et al.  A new method for computing highly accurate DSM synthetic seismograms , 1995 .

[52]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[53]  Mrinal K. Sen,et al.  A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation , 2010 .