A Simpler Method to Obtain a PTAS for Connected k-Path Vertex Cover in Unit Disk Graph
暂无分享,去创建一个
[1] Zhao Zhang,et al. PTAS for minimum k-path vertex cover in ball graph , 2017, Inf. Process. Lett..
[2] Bostjan Bresar,et al. Minimum k-path vertex cover , 2010, Discret. Appl. Math..
[3] Zhao Zhang,et al. A PTAS for minimum weighted connected vertex cover P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_3$$\end{documen , 2015, Journal of Combinatorial Optimization.
[4] Peng-Jun Wan,et al. Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2004, Mob. Networks Appl..
[5] Andreas Björklund,et al. Narrow sieves for parameterized paths and packings , 2010, J. Comput. Syst. Sci..
[6] Deying Li,et al. A polynomial‐time approximation scheme for the minimum‐connected dominating set in ad hoc wireless networks , 2003, Networks.
[7] Zhao Zhang,et al. A PTAS for the minimum weight connected vertex cover P3 problem on unit disk graphs , 2015, Theor. Comput. Sci..
[8] Weili Wu,et al. A PTAS for minimum connected dominating set in 3-dimensional Wireless sensor networks , 2009, J. Glob. Optim..
[9] Xiaohui Huang,et al. Approximation algorithms for minimum (weight) connected k-path vertex cover , 2016, Discret. Appl. Math..
[10] Yin-Feng Xu,et al. A New Proof for Zassenhaus-Groemer-Oler inequality , 2012, Discret. Math. Algorithms Appl..
[11] Marián Novotný,et al. Design and Analysis of a Generalized Canvas Protocol , 2010, WISTP.
[12] N. Oler,et al. An inequality in the geometry of numbers , 1961 .
[13] Peter Rossmanith,et al. Fixed-parameter algorithms for vertex cover P3 , 2016, Discret. Optim..
[14] Wei Wang,et al. PTAS for the minimum k-path connected vertex cover problem in unit disk graphs , 2013, J. Glob. Optim..
[15] Wenli Zhou,et al. A factor 2 approximation algorithm for the vertex cover P3 problem , 2011, Inf. Process. Lett..