Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance

[1]  Dong Hoe Kim,et al.  Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control , 2018 .

[2]  Kyoung-Shin Choi,et al.  Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition , 2018 .

[3]  S. Nam,et al.  Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation , 2018 .

[4]  Yen‐Pei Fu,et al.  Facile synthesis of deep eutectic solvent assisted BiOCl/BiVO4@AgNWs plasmonic photocatalysts under visible light enhanced catalytic performance , 2017 .

[5]  Songcan Wang,et al.  An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. , 2017, Angewandte Chemie.

[6]  L. Ge,et al.  Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method , 2017 .

[7]  Licheng Sun,et al.  Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co4 O4 Cubane Catalyst. , 2017, Angewandte Chemie.

[8]  Kevin G. Stamplecoskie,et al.  Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO3/BiVO4 Coupled System , 2017 .

[9]  K. Nam,et al.  Spontaneous phase transition of hexagonal wurtzite CoO: application to electrochemical and photoelectrochemical water splitting. , 2017, Chemical communications.

[10]  K. Schwarz,et al.  Investigation of the Optical and Excitonic Properties of the Visible Light-Driven Photocatalytic BiVO4 Material , 2017 .

[11]  Chuanwei Cheng,et al.  Three-Dimensional FTO/TiO2/BiVO4 Composite Inverse Opals Photoanode with Excellent Photoelectrochemical Performance , 2017 .

[12]  Mingtao Li,et al.  Enhanced Photoelectrochemical Performance of the BiVO4/Zn:BiVO4 Homojunction for Water Oxidation , 2016 .

[13]  Liejin Guo,et al.  Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting , 2016 .

[14]  Liejin Guo,et al.  A Multistep Ion Exchange Approach for Fabrication of Porous BiVO4 Nanorod Arrays on Transparent Conductive Substrate , 2016 .

[15]  J. Durrant,et al.  Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation , 2016 .

[16]  Jinzhan Su,et al.  A Place in the Sun for Artificial Photosynthesis , 2016 .

[17]  Xuejin Li,et al.  A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell , 2016 .

[18]  Liejin Guo,et al.  Comparison of sandwich and fingers-crossing type WO3/BiVO4 multilayer heterojunctions for photoelectrochemical water oxidation , 2016 .

[19]  Ashraf Uddin,et al.  Open circuit voltage of organic solar cells: an in-depth review , 2016 .

[20]  Tae Woo Kim,et al.  Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer. , 2016, The journal of physical chemistry letters.

[21]  Juan Bisquert,et al.  Photoelectrochemical Solar Fuel Production , 2016 .

[22]  Jae Sung Lee,et al.  Defective ZnFe₂O₄ nanorods with oxygen vacancy for photoelectrochemical water splitting. , 2015, Nanoscale.

[23]  Tae Woo Kim,et al.  Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. , 2015, Chemical reviews.

[24]  W. Mai,et al.  BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics , 2015 .

[25]  Ian D. Sharp,et al.  Interfacial band-edge energetics for solar fuels production , 2015 .

[26]  F. Toma,et al.  p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[27]  P. Agrawal,et al.  Direct Evidence of Surface Reduction in Monoclinic BiVO4 , 2015 .

[28]  Bryan M. Hunter,et al.  Factors affecting bismuth vanadate photoelectrochemical performance , 2015 .

[29]  Sam S. Yoon,et al.  Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[30]  Li Wang,et al.  Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. , 2014, Nanoscale.

[31]  J. S. Lee,et al.  Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. , 2014, ACS applied materials & interfaces.

[32]  F. Toma,et al.  Electronic Structure of Monoclinic BiVO4 , 2014 .

[33]  Sang Ho Oh,et al.  Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures , 2014, Nature Communications.

[34]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[35]  Jianmeng Chen,et al.  BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation , 2014 .

[36]  Chunbo Liu,et al.  Fabrication of TiO2–BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting , 2014 .

[37]  Tom J. Savenije,et al.  The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study , 2013 .

[38]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[39]  Yiseul Park,et al.  Progress in bismuth vanadate photoanodes for use in solar water oxidation. , 2013, Chemical Society reviews.

[40]  Jing Jiang,et al.  Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. , 2012, Journal of the American Chemical Society.

[41]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[42]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .